Hayashi Fumio, Iwase Ryo, Uzumaki Tatsuya, Ishiura Masahiro
Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
Biochem Biophys Res Commun. 2006 Sep 29;348(3):864-72. doi: 10.1016/j.bbrc.2006.07.143. Epub 2006 Jul 31.
Cyanobacterial clock protein KaiC has a hexagonal, pot-shaped structure composed of six identical dumbbell-shaped subunits. The opposing spherical regions of the dumbbell-shaped structures correspond to the N-terminal and C-terminal domains of KaiC. Previously, we hypothesized that the N-terminal domain of KaiC is responsible for the ATP-induced hexamerization of KaiC while the C-terminal domain is responsible for the phosphorylation of KaiC (Hayashi et al. 2004, J. Biol. Chem. 279, 52331-52337). Here, we tested that hypothesis using the purified protein of each domain. We prepared N-terminal and C-terminal domain proteins (KaiCN and KaiCC, respectively), examined their function by analyzing their ATP- or 5'-adenylylimidodiphosphate (AMPPNP; an unhydrolyzable ATP analog)-induced hexamerization, interactions with KaiA, and phosphorylation, and we demonstrated the following: (1) KaiCN had higher ATP- or AMPPNP-induced oligomerization activity than KaiCC. (2) KaiCc had phosphorylation activity as KaiCWT whereas KaiCN had no activity. (3) KaiCC interacted with KaiA whereas KaiCN did not. (4) The interactions of KaiCC with KaiA did not require that KaiC has a hexamer structure. (5) The interactions of KaiCC with KaiA enhanced the phosphorylation of KaiCC. Furthermore, we presented evidence for the intersubunit phosphorylation of KaiC. KaiCCatE2-, which lacks KaiC phosphorylation activity due to mutations of the catalytic Glu residues, was phosphorylated when it was co-incubated with KaiCC. We propose that the KaiC hexamer consists of a rigid ring structure formed by six N-terminal domains with hexamerization activity and a flexible structure formed by six C-terminal domains with intersubunit phosphorylation activity.
蓝藻生物钟蛋白KaiC具有由六个相同的哑铃状亚基组成的六边形、罐状结构。哑铃状结构相对的球形区域对应于KaiC的N端和C端结构域。此前,我们推测KaiC的N端结构域负责ATP诱导的KaiC六聚化,而C端结构域负责KaiC的磷酸化(Hayashi等人,2004年,《生物化学杂志》279卷,52331 - 52337页)。在此,我们使用每个结构域的纯化蛋白对该假设进行了验证。我们制备了N端和C端结构域蛋白(分别为KaiCN和KaiCC),通过分析它们在ATP或5'-腺苷酰亚胺二磷酸(AMPPNP;一种不可水解的ATP类似物)诱导下的六聚化、与KaiA的相互作用以及磷酸化来检测其功能,结果表明:(1)KaiCN在ATP或AMPPNP诱导下的寡聚化活性高于KaiCC。(2)KaiCc具有与KaiCWT相同的磷酸化活性,而KaiCN没有活性。(3)KaiCC与KaiA相互作用,而KaiCN不与KaiA相互作用。(4)KaiCC与KaiA的相互作用并不要求KaiC具有六聚体结构。(5)KaiCC与KaiA之间的相互作用增强了KaiCC的磷酸化。此外,我们还提供了KaiC亚基间磷酸化的证据。由于催化性Glu残基发生突变而缺乏KaiC磷酸化活性的KaiCCatE2与KaiCC共同孵育时会被磷酸化。我们提出,KaiC六聚体由六个具有六聚化活性的N端结构域形成的刚性环结构和六个具有亚基间磷酸化活性的C端结构域形成的柔性结构组成。