Suppr超能文献

一种古老分子定时器中核心齿轮的结构与机制。

Architecture and mechanism of the central gear in an ancient molecular timer.

作者信息

Egli Martin

机构信息

Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA

出版信息

J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.1065.

Abstract

Molecular clocks are the product of natural selection in organisms from bacteria to human and their appearance early in evolution such as in the prokaryotic cyanobacterium suggests that these timers served a crucial role in genetic fitness. Thus, a clock allows cyanobacteria relying on photosynthesis and nitrogen fixation to temporally space the two processes and avoid exposure of nitrogenase carrying out fixation to high levels of oxygen produced during photosynthesis. Fascinating properties of molecular clocks are the long time constant, their precision and temperature compensation. Although these are hallmarks of all circadian oscillators, the actual cogs and gears that control clocks vary widely between organisms, indicating that circadian timers evolved convergently multiple times, owing to the selective pressure of an environment with a daily light/dark cycle. In , the three proteins KaiA, KaiB and KaiC in the presence of ATP constitute a so-called post-translational oscillator (PTO). The KaiABC PTO can be reconstituted in an Eppendorf tube and keeps time in a temperature-compensated manner. The ease by which the KaiABC clock can be studied has made it the best-investigated molecular clock system. Over the last decade, structures of all three Kai proteins and some of their complexes have emerged and mechanistic aspects have been analysed in considerable detail. This review focuses on the central gear of the clock and only enzyme among the three proteins: KaiC. Our determination of the three-dimensional structure of KaiC early in the quest for a better understanding of the inner workings of the cyanobacterial timer revealed its unusual architecture and conformational differences and unique features of the two RecA-like domains constituting KaiC. The structure also pinpointed phosphorylation sites and differential interactions with ATP molecules at subunit interfaces, and helped guide experiments to ferret out mechanistic aspects of the ATPase, auto-phosphorylation and auto-dephosphorylation reactions catalysed by the homo-hexamer. Comparisons between the structure of KaiC and those of nanomachines such as F1-ATPase and CaMKII also exposed shared architectural features (KaiC/ATPase), mechanistic principles (KaiC/CaMKII) and phenomena, such as subunit exchange between hexameric particles critical for function (clock synchronization, KaiABC; memory-storage, CaMKII).

摘要

分子钟是从细菌到人类等生物体自然选择的产物,它们在进化早期出现,比如在原核蓝细菌中出现,这表明这些计时器在遗传适应性方面发挥了关键作用。因此,生物钟使依赖光合作用和固氮作用的蓝细菌能够在时间上分隔这两个过程,避免进行固氮作用的固氮酶暴露于光合作用过程中产生的高浓度氧气中。分子钟的迷人特性包括长的时间常数、高精度和温度补偿。尽管这些是所有昼夜节律振荡器的标志,但控制生物钟的实际机制在不同生物体之间差异很大,这表明由于具有昼夜光暗循环环境的选择压力,昼夜节律计时器多次趋同进化。在蓝细菌中,三种蛋白质KaiA、KaiB和KaiC在ATP存在的情况下构成了所谓的翻译后振荡器(PTO)。KaiABC PTO可以在微量离心管中重建,并以温度补偿的方式计时。KaiABC生物钟易于研究,这使其成为研究最深入的分子钟系统。在过去十年中,所有三种Kai蛋白及其一些复合物的结构已经出现,并且对其机制方面进行了相当详细的分析。本综述聚焦于生物钟的核心机制以及这三种蛋白质中唯一的酶:KaiC。我们在早期对蓝细菌计时器内部工作机制进行深入理解的过程中确定了KaiC的三维结构,揭示了其不同寻常的结构、构象差异以及构成KaiC的两个类RecA结构域的独特特征。该结构还确定了磷酸化位点以及亚基界面处与ATP分子的不同相互作用,并有助于指导实验以探究由同六聚体催化的ATP酶、自磷酸化和自去磷酸化反应的机制方面。KaiC的结构与诸如F1 - ATP酶和CaMKII等纳米机器的结构之间的比较也揭示了共同的结构特征(KaiC / ATP酶)、机制原理(KaiC / CaMKII)以及现象,例如对于功能至关重要的六聚体颗粒之间的亚基交换(生物钟同步,KaiABC;记忆存储,CaMKII)。

相似文献

8
A cyanobacterial circadian clock based on the Kai oscillator.基于Kai振荡器的蓝藻生物钟。
Cold Spring Harb Symp Quant Biol. 2007;72:47-55. doi: 10.1101/sqb.2007.72.029.

本文引用的文献

5
Biochemistry that times the day.随昼夜节律变化的生物化学。
Biochemistry. 2015 Jan 20;54(2):104-9. doi: 10.1021/bi5014968. Epub 2014 Dec 30.
7
Clocks in algae.藻类中的生物钟
Biochemistry. 2015 Jan 20;54(2):171-83. doi: 10.1021/bi501089x. Epub 2014 Dec 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验