Le Bourhis E, Patriarche G
Université de Poitiers, Laboratoire de Métallurgie Physique, UMR 6630 CNRS, SP2MI-Téléport 2-Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France.
Micron. 2007;38(4):377-89. doi: 10.1016/j.micron.2006.06.007. Epub 2006 Jul 20.
This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.
本文综述了纳米压痕与透射电子显微镜(TEM)相结合在研究半导体结构塑性行为及其对器件设计的影响方面的应用。已开发出仪器化纳米压痕技术,以提取与半导体异质结构中所遇到的尺寸相当的小体积材料的力学行为。我们表明,TEM是研究纳米压痕引起的局部塑性的有力补充工具。TEM-纳米压痕技术有助于详细了解半导体结构中的塑性变形,并为改进器件开辟了实用途径。异质结构的性能会受到使晶格失配层松弛的位错的严重影响。为了将塑性松弛集中在异质结构下方,正在开发不同的方法来获得柔顺的子结构。这些方法使得在整个制造过程中都能考虑微纳电子器件的机械设计。