Suppr超能文献

与纳米级可塑性相关的电流尖峰。

An electric current spike linked to nanoscale plasticity.

作者信息

Nowak Roman, Chrobak Dariusz, Nagao Shijo, Vodnick David, Berg Michael, Tukiainen Antti, Pessa Markus

机构信息

Nordic Hysitron Laboratory, Helsinki University of Technology, Espoo, Vuorimiehentie 2A, FI-02015 TKK, Finland.

出版信息

Nat Nanotechnol. 2009 May;4(5):287-91. doi: 10.1038/nnano.2009.49. Epub 2009 Mar 22.

Abstract

The increase in semiconductor conductivity that occurs when a hard indenter is pressed into its surface has been recognized for years, and nanoindentation experiments have provided numerous insights into the mechanical properties of materials. In particular, such experiments have revealed so called pop-in events, where the indenter suddenly enters deeper into the material without any additional force being applied; these mark the onset of the elastic-plastic transition. Here, we report the observation of a current spike--a sharp increase in electrical current followed by immediate decay to zero at the end of the elastic deformation--during the nanoscale deformation of gallium arsenide. Such a spike has not been seen in previous nanoindentation experiments on semiconductors, and our results, supported by ab initio calculations, suggest a common origin for the electrical and mechanical responses of nanodeformed gallium arsenide. This leads us to the conclusion that a phase transition is the fundamental cause of nanoscale plasticity in gallium arsenide, and the discovery calls for a revision of the current dislocation-based understanding of nanoscale plasticity.

摘要

多年来人们已经认识到,当一个硬质压头压入半导体表面时,其导电性会增加,并且纳米压痕实验为材料的力学性能提供了诸多见解。特别是,此类实验揭示了所谓的“压入事件”,即压头在没有施加任何额外力的情况下突然更深地进入材料;这些标志着弹塑性转变的开始。在此,我们报告了在砷化镓的纳米级变形过程中观察到的电流尖峰——电流急剧增加,随后在弹性变形结束时立即衰减至零。这种尖峰在先前对半导体的纳米压痕实验中未曾见过,并且我们的结果在从头算计算的支持下,表明纳米变形砷化镓的电学和力学响应有一个共同的起源。这使我们得出结论,相变是砷化镓纳米级塑性的根本原因,这一发现要求对当前基于位错的纳米级塑性理解进行修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验