Suppr超能文献

二维磁共振波谱数据的区域选择性信号参数估计

Area-selective signal parameter estimation for two-dimensional MR spectroscopy data.

作者信息

Sandgren Niclas, Stoica Petre, Frigo Frederick J

机构信息

Systems and Control Division, Department of Information Technology, Uppsala University, P.O. Box 337, SE-751 05 Uppsala, Sweden.

出版信息

J Magn Reson. 2006 Nov;183(1):50-9. doi: 10.1016/j.jmr.2006.07.018. Epub 2006 Aug 10.

Abstract

We consider the problem of parametric spectral analysis of two-dimensional (2D) magnetic resonance spectroscopy (MRS) data. Estimating the signal components from 2D MRS data is becoming common practice in many clinical MR applications. The most frequently used signal processing tool for this estimation problem is the non-parametric 2D-FFT. There are several alternative parametric methods available to perform this analysis, yet their computational complexity is generally rather high and it becomes prohibitive when the number of points in the measured data matrix is large. In this paper, we propose a novel signal parameter estimation technique which operates on a pre-specified sub-area of the 2D spectrum. This area-selective approach can be used either to estimate only the signal components of main interest in the data, or to compute signal parameter estimates of all present signal components as the computational burden for each sub-area is low. In the numerical example section we consider both simulated data and in vitro 1H data acquired from a 1.5 T MR scanner.

摘要

我们考虑二维(2D)磁共振波谱(MRS)数据的参数谱分析问题。从二维磁共振波谱数据中估计信号成分在许多临床磁共振应用中已成为常见做法。解决此估计问题最常用的信号处理工具是非参数二维快速傅里叶变换(2D-FFT)。有几种可供选择的参数方法来执行此分析,然而它们的计算复杂度通常相当高,当测量数据矩阵中的点数很大时就变得令人望而却步。在本文中,我们提出了一种新颖的信号参数估计技术,该技术在二维频谱的预先指定子区域上运行。这种区域选择方法既可以用于仅估计数据中主要感兴趣的信号成分,也可以用于计算所有存在的信号成分的信号参数估计值,因为每个子区域的计算负担较低。在数值示例部分,我们考虑了模拟数据和从1.5 T磁共振扫描仪获取的体外1H数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验