Suppr超能文献

一个用于探究组织负荷和组织浓度梯度在修正的斯塔林原理中的作用的一维模型。

A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle.

作者信息

Zhang Xiaobing, Adamson Roger H, Curry Fitz-Roy E, Weinbaum Sheldon

机构信息

Depts. of Biomedical and Mechanical Engineering, The City College of New York, New York, NY 10031, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2950-64. doi: 10.1152/ajpheart.01160.2005. Epub 2006 Aug 11.

Abstract

The recent experiments in Hu et al. (Am J Physiol Heart Circ Physiol 279: H1724-H1736, 2000) and Adamson et al. (J Physiol 557: 889-907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281-304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. However, for most physiological conditions, tissue gradients are two to three orders of magnitude smaller than the albumin gradients in the cleft, and the numerical model does not converge. A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips's original 1-D analysis of the matrix layer (J Physiol 388: 421-435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick (Exp Physiol 76: 825-857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.

摘要

胡等人(《美国生理学杂志:心脏与循环生理学》279卷:H1724 - H1736,2000年)以及亚当森等人(《生理学杂志》557卷:889 - 907,2004年)近期在青蛙和大鼠肠系膜微血管上所做的实验,提供了有力证据,支持了米歇尔 - 温鲍姆关于修正的不对称斯塔林原理的假说,即在该假说中,斯塔林力平衡是在局部跨内皮糖萼层应用,而非在管腔与组织之间。这些实验由一个三维(3 - D)数学模型(胡等人;《微血管研究》58卷:281 - 304,1999年)进行解读,以描述糖萼层、带有紧密连接链的裂隙以及周围组织中耦合的水和白蛋白通量。如果组织处于均匀浓度或因组织负荷而具有显著的组织梯度,这个数值3 - D模型会收敛。然而,对于大多数生理状况而言,组织梯度比裂隙中的白蛋白梯度小两到三个数量级,并且该数值模型不会收敛。已开发出一个更简单的多层一维(1 - D)分析模型来描述这些情况。此模型用于扩展米歇尔和菲利普斯对基质层的原始一维分析(《生理学杂志》388卷:421 - 435,1987年),以纳入带有紧密连接链的裂隙,解释莱维克(《实验生理学》76卷:825 - 857,1991年)的观察结果,即大多数组织具有接近管腔浓度0.4的平衡组织浓度,并探讨囊泡运输在实现这种平衡中的作用。该模型预测了一个惊人的发现:如果在裂隙中建立一个反向梯度以防止糖萼后面的浓度升高,那么与米歇尔和菲利普斯的实验相反,在低压下可以有稳态重吸收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验