Suppr超能文献

通过水相橄榄石矿物碳酸化实现碳封存:钝化层形成的作用。

Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation.

作者信息

Béarat Hamdallah, McKelvy Michael J, Chizmeshya Andrew V G, Gormley Deirdre, Nunez Ryan, Carpenter R W, Squires Kyle, Wolf George H

机构信息

Center for Solid State Science, Science and Engineering of Materials Graduate Program, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Environ Sci Technol. 2006 Aug 1;40(15):4802-8. doi: 10.1021/es0523340.

Abstract

CO2 sequestration via carbonation of widely available low-cost minerals, such as olivine, can permanently dispose of CO2 in an environmentally benign and a geologically stable form. We report the results of studies of the mechanisms that limit aqueous olivine carbonation reactivity under the optimum sequestration reaction conditions observed to date: 1 M NaCl + 0.64 M NaHCO3 at Te 185 degrees C and P(CO2) approximately equal to 135 bar. A reaction limiting silica-rich passivating layer (PL) forms on the feedstock grains, slowing carbonate formation and raising process cost. The morphology and composition of the passivating layers are investigated using scanning and transmission electron microscopy and atomic level modeling. Postreaction analysis of feedstock particles, recovered from stirred autoclave experiments at 1500 rpm, provides unequivocal evidence of local mechanical removal (chipping) of PL material, suggesting particle abrasion. This is corroborated by our observation that carbonation increases dramatically with solid particle concentration in stirred experiments. Multiphase hydrodynamic calculations are combined with experimentto better understand the associated slurry-flow effects. Large-scale atomic-level simulations of the reaction zone suggest that the PL possesses a "glassy" but highly defective SiO2 structure that can permit diffusion of key reactants. Mitigating passivating layer effectiveness is critical to enhancing carbonation and lowering sequestration process cost.

摘要

通过菱镁矿等广泛可得的低成本矿物的碳酸化作用来封存二氧化碳,能够以环境友好且地质稳定的形式永久处置二氧化碳。我们报告了在迄今观察到的最佳封存反应条件下(185摄氏度、135巴左右的二氧化碳分压、1M氯化钠 + 0.64M碳酸氢钠)限制橄榄石水相碳酸化反应活性机制的研究结果。在原料颗粒上形成了一个限制反应的富含二氧化硅的钝化层(PL),减缓了碳酸盐的形成并提高了工艺成本。使用扫描电子显微镜、透射电子显微镜和原子级模型研究了钝化层的形态和组成。对从1500转/分钟的搅拌高压釜实验中回收的原料颗粒进行反应后分析,明确证明了钝化层材料的局部机械去除(剥落),表明存在颗粒磨损。我们在搅拌实验中的观察结果证实了这一点,即碳酸化作用随着固体颗粒浓度的增加而显著增强。将多相流体动力学计算与实验相结合,以更好地理解相关的浆体流动效应。对反应区进行的大规模原子级模拟表明,钝化层具有“玻璃状”但存在高度缺陷的二氧化硅结构,这可能允许关键反应物扩散。降低钝化层的有效性对于提高碳酸化作用和降低封存工艺成本至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验