Department of Chemical Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Chemical, Polymer and Composite Materials Engineering Department, University of Engineering and Technology, (New Campus), Lahore, 39021, Pakistan.
Environ Sci Pollut Res Int. 2022 Oct;29(50):75161-75183. doi: 10.1007/s11356-022-23116-3. Epub 2022 Sep 21.
Peridotite and serpentinites can be used to sequester CO emissions through mineral carbonation. Olivine dissolution rate is directly proportional with temperature, presence of CO, surface area of mineral particles and presence of ligands and is inversely proportional to pH. Olivine dissolution is better under air flow and increases seven times when rock-inhibiting fungus (Knufia petricola) is used. Olivine dissolution retards as silica layers form during reaction. Sonication, acoustic and concurrent grinding using various grinding medias have been used to artificially break these silica layers and achieve high magnesium extraction. Wet grinding using 50 wt.% ethanol enhanced CO uptake of dunite 6.9 times and CO uptake of harzburgite by 4.5 times. The best economical process is single-stage concurrent grinding at 130 bar, 185 °C, 15 wt.% solids and 50 wt.% grinding media (zirconia) using 0.64 M NaHCO. Ratio of grinding media to feed should not be less than 3:1. Yield increases with temperature, pressure, time of reaction, pH and rpm and using additives and grinding media and reducing particle size. This review aims to investigate the progress from 1970s to 2021 on aqueous mineral carbonation of olivine and its naturally available rocks (harzburgite and dunite). This paper comprehensively reviews all aspects of olivine carbonation including olivine dissolution kinetics, effects of grinding and concurrent grinding, thermal activation of olivine feedstock (dunites and harzburgites) as well as chemistry of olivine mineral carbonation. The effects of different reaction parameters on the carbonation yield, role of mineral carbonation accelerators and costs of mineral carbonation process are discussed.
橄榄岩和蛇纹岩可以通过矿物碳化来封存 CO 排放。橄榄石的溶解速率与温度、CO 的存在、矿物颗粒的表面积以及配体的存在成正比,与 pH 值成反比。在气流下,橄榄石的溶解效果更好,当使用抑真菌(Knufia petricola)时,溶解效果提高 7 倍。随着反应过程中形成的二氧化硅层,橄榄石的溶解会减缓。超声、声和使用各种研磨介质的协同研磨已被用于人为地打破这些二氧化硅层,从而实现高镁提取。使用 50wt%乙醇的湿磨提高了纯橄榄岩的 CO 吸收率 6.9 倍,对斜方辉石岩的 CO 吸收率提高了 4.5 倍。最佳的经济工艺是在 130 巴、185°C、15wt%固含量和 50wt%研磨介质(氧化锆)下进行单级协同研磨,使用 0.64M NaHCO3。研磨介质与进料的比例不应低于 3:1。产率随温度、压力、反应时间、pH 值和 rpm 以及添加剂和研磨介质的使用和粒径的减小而增加。本文旨在调查 20 世纪 70 年代至 2021 年期间橄榄石及其天然存在的岩石(方辉橄榄岩和纯橄榄岩)的水相矿物碳化的进展情况。本文全面综述了橄榄石碳化的各个方面,包括橄榄石溶解动力学、研磨和协同研磨的影响、橄榄石原料(方辉橄榄岩和纯橄榄岩)的热活化以及橄榄石矿物碳化的化学。讨论了不同反应参数对碳化产率的影响、矿物碳化促进剂的作用以及矿物碳化过程的成本。