Suppr超能文献

使用测力平台姿势描记法评估嗜睡程度。

Evaluating sleepiness using force platform posturography.

作者信息

Haeggström Edward O, Forsman Pia M, Wallin Anders E, Toppila Esko M, Pyykkö Ilmari V

机构信息

Department of Physical Sciences, University of Helsinki.

出版信息

IEEE Trans Biomed Eng. 2006 Aug;53(8):1578-85. doi: 10.1109/TBME.2006.878069.

Abstract

We have investigated the feasibility to use posturography as a method to estimate sleep deprivation. This manuscript presents a proof-of-concept of this idea. Twenty-one healthy subjects aged 20-37 years participated in the study. The subjects were deprived of sleep for up to 36 h. Their postural stability was measured as a function of sleep deprivation time. As a reference the critical fusion frequency method for measuring sleepiness was used. The 163 posturographic parameters used for analyzing the posturographic data were found from the literature. Of these parameters, the fractal dimension of the sway path, the most common frequency of the sway, the time-interval for open-loop control of stance, and the most common amplitude of the sway showed the highest linear correlations with sleep deprivation time. Using these four parameters we were able to estimate the sleep deprivation time with an accuracy better than 5 h for 80% of the subjects.

摘要

我们研究了使用姿势描记法作为估计睡眠剥夺的一种方法的可行性。本手稿展示了这一想法的概念验证。21名年龄在20至37岁之间的健康受试者参与了该研究。受试者被剥夺睡眠长达36小时。他们的姿势稳定性作为睡眠剥夺时间的函数进行测量。作为参考,使用了测量嗜睡程度的临界融合频率方法。用于分析姿势描记数据的163个姿势描记参数来自文献。在这些参数中,摇摆路径的分形维数、摇摆的最常见频率、姿势开环控制的时间间隔以及摇摆的最常见幅度与睡眠剥夺时间呈现出最高的线性相关性。使用这四个参数,我们能够对80%的受试者以优于5小时的准确度估计睡眠剥夺时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验