Schwesig René, Becker Stephan, Lauenroth Andreas, Kluttig Alexander, Leuchte Siegfried, Esperer Hans Dieter
Department Sportwissenschaft, Martin-Luther-Universität Halle-Wittenberg, Selkestr. 9/F, 06099 Halle/S., Deutschland.
Biomed Tech (Berl). 2009 Dec;54(6):347-56. doi: 10.1515/BMT.2009.041.
Nigrostriatal and cerebellar systems are important postural subsystems in neurologic rehabilitation. In this study, we investigated the ability to differentiate both systems via posturography and spectral analysis. This cross-sectional study included 156 study subjects with 52 individuals in each group (healthy controls, Parkinson's disease and cerebellar disease patients). The mean age of all groups was 61.3+/-13.4 years. We used the interactive balance system (IBS) to differentiate vertical pressure fluctuations on four independent force plates, each supporting one heel or the toes of each leg in eight test positions. We also performed a frequency analysis of the force/time signal. The univariate, multifactor covariance analysis was used for statistical evaluation. Variance analysis of the Parkinson's group (mean/95% CI: 23.0/20.5-25.5) and control group (mean/95% CI: 16.7/14.2-19.2) revealed the greatest differences in frequency range F1. Subjects with cerebellar disease showed significant differences compared with controls in all frequency ranges. Furthermore, cerebellar disease subjects showed a consistently lower postural stability compared with the Parkinson's (p<0.001) and control groups (p<0.001). Results from the present study suggest that the cerebellar and nigrostriatal system can be effectively differentiated and assessed with frequency-analyzed posturographic parameters. Furthermore, the IBS allows a highly practical differential assessment in neurologic rehabilitation.