Suppr超能文献

转录组分析揭示了质粒pSymB对苜蓿中华根瘤菌渗透适应的重要性。

Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.

作者信息

Domínguez-Ferreras Ana, Pérez-Arnedo Rebeca, Becker Anke, Olivares José, Soto María J, Sanjuán Juan

机构信息

Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Prof. Albareda 1, E-18008 Granada, Spain.

出版信息

J Bacteriol. 2006 Nov;188(21):7617-25. doi: 10.1128/JB.00719-06. Epub 2006 Aug 17.

Abstract

In this work, DNA microarrays were used to investigate genome-wide transcriptional responses of Sinorhizobium meliloti to a sudden increase in external osmolarity elicited by addition of either NaCl or sucrose to exponentially growing cultures. A time course of the response within the first 4 h after the osmotic shock was established. We found that there was a general redundancy in the differentially expressed genes after NaCl or sucrose addition. Both kinds of stress resulted in induction of a large number of genes having unknown functions and in repression of many genes coding for proteins with known functions. There was a strong replicon bias in the pattern of the osmotic stress response; whereas 64% of the upregulated genes had a plasmid localization, 85% of the downregulated genes were chromosomal. Among the pSymB osmoresponsive genes, 83% were upregulated, suggesting the importance of this plasmid for S. meliloti osmoadaptation. Indeed, we identified a 200-kb region in pSymB needed for adaptation to saline shock which has a high density of osmoregulated genes.

摘要

在本研究中,利用DNA微阵列来研究苜蓿中华根瘤菌在指数生长期培养物中添加NaCl或蔗糖引发外部渗透压突然升高时的全基因组转录反应。建立了渗透休克后最初4小时内的反应时间进程。我们发现,添加NaCl或蔗糖后差异表达基因存在普遍冗余。两种胁迫都导致大量功能未知基因的诱导以及许多编码已知功能蛋白质的基因的抑制。渗透胁迫反应模式存在强烈的复制子偏向性;上调基因中有64%位于质粒上,而下调基因中有85%位于染色体上。在共生质粒B(pSymB)的渗透反应基因中,83%被上调,表明该质粒对苜蓿中华根瘤菌的渗透适应很重要。事实上,我们在pSymB中鉴定出一个适应盐休克所需的200 kb区域,该区域具有高密度的渗透调节基因。

相似文献

1
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
J Bacteriol. 2006 Nov;188(21):7617-25. doi: 10.1128/JB.00719-06. Epub 2006 Aug 17.
4
The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.
J Biotechnol. 2011 Aug 20;155(1):20-33. doi: 10.1016/j.jbiotec.2010.12.018. Epub 2011 Mar 17.
7
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9889-94. doi: 10.1073/pnas.161294698. Epub 2001 Jul 31.
9
Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids.
Funct Integr Genomics. 2002 Nov;2(6):274-81. doi: 10.1007/s10142-002-0068-0. Epub 2002 Aug 1.
10
Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Multipartite Genome.
G3 (Bethesda). 2018 May 4;8(5):1711-1720. doi: 10.1534/g3.117.300405.

引用本文的文献

1
Factors governing attachment of to legume roots at acid, neutral, and alkaline pHs.
mSystems. 2024 Sep 17;9(9):e0042224. doi: 10.1128/msystems.00422-24. Epub 2024 Aug 21.
3
Transcriptomic response of to the predatory attack of .
Front Microbiol. 2023 Jun 19;14:1213659. doi: 10.3389/fmicb.2023.1213659. eCollection 2023.
6
Salt Stress Enhances Early Symbiotic Gene Expression in and Induces a Stress-Specific Set of Rhizobium-Responsive Genes.
Mol Plant Microbe Interact. 2021 Aug;34(8):904-921. doi: 10.1094/MPMI-01-21-0019-R. Epub 2021 Sep 8.
7
Exopolysaccharide II Is Relevant for the Survival of under Water Deficiency and Salinity Stress.
Molecules. 2020 Oct 22;25(21):4876. doi: 10.3390/molecules25214876.
8
Desiccation-induced cell damage in bacteria and the relevance for inoculant production.
Appl Microbiol Biotechnol. 2020 May;104(9):3757-3770. doi: 10.1007/s00253-020-10501-6. Epub 2020 Mar 13.
9
Responses of sp. WH15 to High Carbon Revealed by Integrated Omics Analyses.
Microorganisms. 2020 Feb 12;8(2):244. doi: 10.3390/microorganisms8020244.
10
Ecological Conditions and Molecular Determinants Involved in Lifestyle in Tumors.
Front Plant Sci. 2019 Jul 30;10:978. doi: 10.3389/fpls.2019.00978. eCollection 2019.

本文引用的文献

1
Ammonia Inhibition of Plasmid pRmeGR4a Conjugal Transfer between Rhizobium meliloti Strains.
Appl Environ Microbiol. 1996 Apr;62(4):1145-50. doi: 10.1128/aem.62.4.1145-1150.1996.
2
Ionic Stress and Osmotic Pressure Induce Different Alterations in the Lipopolysaccharide of a Rhizobium meliloti Strain.
Appl Environ Microbiol. 1995 Oct;61(10):3701-4. doi: 10.1128/aem.61.10.3701-3704.1995.
3
Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions.
Mol Plant Microbe Interact. 2005 Jul;18(7):694-702. doi: 10.1094/MPMI-18-0694.
4
Envelope stress responses and Gram-negative bacterial pathogenesis.
Mol Microbiol. 2005 Jun;56(5):1119-28. doi: 10.1111/j.1365-2958.2005.04625.x.
6
Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.
Res Microbiol. 2005 Apr;156(3):403-15. doi: 10.1016/j.resmic.2004.10.004. Epub 2004 Dec 15.
7
A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16636-41. doi: 10.1073/pnas.0407269101. Epub 2004 Nov 12.
9
Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011.
Mol Genet Genomics. 2004 Aug;272(1):1-17. doi: 10.1007/s00438-004-1030-8. Epub 2004 Jun 23.
10
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Mol Plant Microbe Interact. 2004 Mar;17(3):292-303. doi: 10.1094/MPMI.2004.17.3.292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验