Savadjiev Peter, Campbell Jennifer S W, Pike G Bruce, Siddiqi Kaleem
Centre for Intelligent Machines and School of Computer Science, McGill University, McConnell Eng. Building, 3480 University Street, Room 410, Montréal, QC, Canada H3A 2A7.
Med Image Anal. 2006 Oct;10(5):799-813. doi: 10.1016/j.media.2006.06.009. Epub 2006 Aug 21.
We develop a differential geometric framework for regularizing diffusion MRI data. The key idea is to model white matter fibres as 3D space curves and to then extend Parent and Zucker's 2D curve inference approach [Parent, P., Zucker, S., 1989. Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 823-839] by using a notion of co-helicity to indicate compatibility between fibre orientations at each voxel with those in a local neighborhood. We argue that this provides several advantages over earlier regularization methods. We validate the approach quantitatively on a biological phantom and on synthetic data, and qualitatively on data acquired in vivo from a human brain. We also demonstrate the use of the technique to improve the performance of a fibre tracking algorithm.
我们开发了一种用于正则化扩散磁共振成像(MRI)数据的微分几何框架。关键思想是将白质纤维建模为三维空间曲线,然后通过使用共螺旋度的概念扩展帕伦特(Parent)和朱克(Zucker)的二维曲线推理方法[帕伦特,P.,朱克,S.,1989年。轨迹推理、曲率一致性和曲线检测。《IEEE模式分析与机器智能汇刊》11,823 - 839],以表明每个体素处的纤维方向与局部邻域中纤维方向之间的兼容性。我们认为,与早期的正则化方法相比,这具有几个优点。我们在生物模型和合成数据上对该方法进行了定量验证,并在从人脑获取的体内数据上进行了定性验证。我们还展示了该技术在提高纤维追踪算法性能方面的应用。