Department of Mathematics, National University of Singapore, Singapore.
Neuroimage. 2011 Jun 1;56(3):1181-201. doi: 10.1016/j.neuroimage.2011.01.053. Epub 2011 Feb 1.
High angular resolution diffusion imaging (HARDI) has become an important technique for imaging complex oriented structures in the brain and other anatomical tissues. This has motivated the recent development of several methods for computing the orientation probability density function (PDF) at each voxel. However, much less work has been done on developing techniques for filtering, interpolation, averaging and principal geodesic analysis of orientation PDF fields. In this paper, we present a Riemannian framework for performing such operations. The proposed framework does not require that the orientation PDFs be represented by any fixed parameterization, such as a mixture of von Mises-Fisher distributions or a spherical harmonic expansion. Instead, we use a nonparametric representation of the orientation PDF. We exploit the fact that under the square-root re-parameterization, the space of orientation PDFs forms a Riemannian manifold: the positive orthant of the unit Hilbert sphere. We show that various orientation PDF processing operations, such as filtering, interpolation, averaging and principal geodesic analysis, may be posed as optimization problems on the Hilbert sphere, and can be solved using Riemannian gradient descent. We illustrate these concepts with numerous experiments on synthetic, phantom and real datasets. We show their application to studying left/right brain asymmetries.
高角度分辨率扩散成像(HARDI)已成为在大脑和其他解剖组织中成像复杂定向结构的重要技术。这促使人们最近开发了几种在每个体素上计算方向概率密度函数(PDF)的方法。然而,在开发方向 PDF 场的滤波、插值、平均和主测地线分析技术方面的工作要少得多。在本文中,我们提出了一个用于执行此类操作的黎曼框架。所提出的框架不需要将方向 PDF 表示为任何固定参数化,例如 von Mises-Fisher 分布的混合或球谐展开。相反,我们使用方向 PDF 的非参数表示。我们利用了这样一个事实,即在平方根重新参数化下,方向 PDF 的空间形成了一个黎曼流形:单位希尔伯特球的正半轴。我们表明,各种方向 PDF 处理操作,如滤波、插值、平均和主测地线分析,可以作为希尔伯特球上的优化问题来提出,并可以使用黎曼梯度下降来解决。我们使用合成、幻影和真实数据集上的大量实验来说明这些概念。我们展示了它们在研究左右脑不对称性中的应用。