Suppr超能文献

从20世纪50年代到新千年的兴奋-收缩偶联。

Excitation-contraction coupling from the 1950s into the new millennium.

作者信息

Dulhunty A F

机构信息

Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia.

出版信息

Clin Exp Pharmacol Physiol. 2006 Sep;33(9):763-72. doi: 10.1111/j.1440-1681.2006.04441.x.

Abstract
  1. Excitation-contraction coupling is broadly defined as the process linking the action potential to contraction in striated muscle or, more narrowly, as the process coupling surface membrane depolarization to Ca(2+) release from the sarcoplasmic reticulum. 2. We now know that excitation-contraction coupling depends on a macromolecular protein complex or 'calcium release unit'. The complex extends the extracellular space within the transverse tubule invaginations of the surface membrane, across the transverse tubule membrane into the cytoplasm and then across the sarcoplasmic reticulum membrane and into the lumen of the sarcoplasmic reticulum. 3. The central element of the macromolecular complex is the ryanodine receptor calcium release channel in the sarcoplasmic reticulum membrane. The ryanodine receptor has recruited a surface membrane L-type calcium channel as a 'voltage sensor' to detect the action potential and the calcium-binding protein calsequestrin to detect in the environment within the sarcoplasmic reticulum. Consequently, the calcium release channel is able to respond to surface depolarization in a manner that depends on the Ca(2+) load within the calcium store. 4. The molecular components of the 'calcium release unit' are the same in skeletal and cardiac muscle. However, the mechanism of excitation-contraction coupling is different. The signal from the voltage sensor to ryanodine receptor is chemical in the heart, depending on an influx of external Ca(2+) through the surface calcium channel. In contrast, conformational coupling links the voltage sensor and the ryanodine receptor in skeletal muscle. 5. Our current understanding of this amazingly efficient molecular signal transduction machine has evolved over the past 50 years. None of the proteins had been identified in the 1950s; indeed, there was debate about whether the molecules involved were, in fact, protein. Nevertheless, a multitude of questions about the molecular interactions and structures of the proteins and their interaction sites remain to be answered and provide a challenge for the next 50 years.
摘要
  1. 兴奋-收缩偶联广义上被定义为将动作电位与横纹肌收缩相联系的过程,或者更狭义地说,是将表面膜去极化与肌浆网中Ca(2+)释放相偶联的过程。2. 我们现在知道兴奋-收缩偶联依赖于一种大分子蛋白质复合物或“钙释放单元”。该复合物将表面膜横管内陷处的细胞外空间延伸,穿过横管膜进入细胞质,然后穿过肌浆网膜进入肌浆网腔。3. 大分子复合物的核心元件是肌浆网膜上的兰尼碱受体钙释放通道。兰尼碱受体招募了一个表面膜L型钙通道作为“电压传感器”来检测动作电位,以及钙结合蛋白肌集钙蛋白来检测肌浆网内的环境。因此,钙释放通道能够以一种依赖于钙库中Ca(2+)负荷的方式对表面去极化做出反应。4. “钙释放单元”的分子成分在骨骼肌和心肌中是相同的。然而,兴奋-收缩偶联的机制是不同的。在心脏中,从电压传感器到兰尼碱受体的信号是化学信号,依赖于外部Ca(2+)通过表面钙通道的内流。相比之下,构象偶联在骨骼肌中将电压传感器和兰尼碱受体联系起来。5. 我们目前对这个惊人高效的分子信号转导机制的理解是在过去50年中逐渐形成的。在20世纪50年代,这些蛋白质都还没有被鉴定出来;事实上,当时对于所涉及的分子是否真的是蛋白质还存在争议。尽管如此,关于这些蛋白质的分子相互作用、结构及其相互作用位点仍有许多问题有待解答,这为未来50年提出了挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验