Suppr超能文献

系统发育网络的最大似然法

Maximum likelihood of phylogenetic networks.

作者信息

Jin Guohua, Nakhleh Luay, Snir Sagi, Tuller Tamir

机构信息

Department of Computer Science, Rice University Houston, TX, USA.

出版信息

Bioinformatics. 2006 Nov 1;22(21):2604-11. doi: 10.1093/bioinformatics/btl452. Epub 2006 Aug 23.

Abstract

MOTIVATION

Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative.

RESULTS

In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree.

AVAILABILITY

Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf

摘要

动机

水平基因转移(HGT)被认为在细菌中普遍存在,并且在其基因组多样化以及对抗生素产生抗性的能力方面发挥着重要作用。鉴于其进化意义以及对人类健康的影响,开发准确且高效的检测和重建HGT的方法势在必行。

结果

在本文中,我们针对许多涉及基于系统发育的HGT检测和重建的问题,提供了一个新的面向HGT的似然框架。除了制定各种似然标准外,我们还表明这些问题大多是NP难问题,并针对在这些标准下高效且准确地重建HGT提供了启发式方法。我们实现了我们的启发式方法,并使用它们来分析生物学数据和合成数据。在这两种情况下,我们的标准和启发式方法在识别正确的HGT事件数量以及推断它们在物种树上的正确位置方面都表现出非常好的性能。

可用性

可根据作者要求获取标准以及启发式方法的实现和难度证明。难度证明也可从http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验