Suppr超能文献

通过微流控装置中的重复分割制备化学性质不同的纳升微滴阵列。

Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

作者信息

Adamson David N, Mustafi Debarshi, Zhang John X J, Zheng Bo, Ismagilov Rustem F

机构信息

Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.

出版信息

Lab Chip. 2006 Sep;6(9):1178-86. doi: 10.1039/b604993a. Epub 2006 Jul 27.

Abstract

This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

摘要

本文报道了一种制备具有不同化学成分的纳升塞阵列的方法。基于塞的微流控技术在大规模生物筛选应用中的一个主要限制是难以在纳升尺度上制造具有不同化学成分的塞阵列。在此,使用具有多个串联T型接头的微流控装置,将一个大的(约320纳升)塞的单个输入阵列进行拆分,以产生16个较小的(约20纳升)塞的输出阵列;这些阵列的组成和配置与输入阵列相同。本文展示了如何利用T型接头微通道几何结构中塞的被动分裂,从单个大体积阵列中产生一组对化学筛选有用的较小体积输出阵列。提出了一个简单的理论描述,将分裂描述为毛细管数、毛细管压力、通道两端的总压差以及几何流体阻力的函数。通过考虑这些因素,可以在分裂过程中消除塞的聚结和塞-塞污染,并保持分裂的对称性。此外,采用基于阀和基于体积的方法实现了单出口分裂装置,用于协调输出阵列的释放。通过所提出的分裂方法获得了包含商业稀疏矩阵筛选的塞阵列,并将这些阵列用于蛋白质结晶试验。本文提出的技术可能有助于高通量化学和生物筛选的实施。

相似文献

8
Microprocessing of liquid plugs for bio/chemical analyses.用于生物/化学分析的液体塞微处理。
Anal Chem. 2008 Aug 15;80(16):6206-13. doi: 10.1021/ac800492v. Epub 2008 Jul 16.
9
Nanoliter droplet viscometer with additive-free operation.无添加剂操作的纳升级液滴粘度计。
Lab Chip. 2013 Jan 21;13(2):297-301. doi: 10.1039/c2lc41130j. Epub 2012 Nov 29.

引用本文的文献

1
Water-in-water droplet microfluidics: A design manual.水包水液滴微流控:设计手册。
Biomicrofluidics. 2022 Nov 17;16(6):061503. doi: 10.1063/5.0119316. eCollection 2022 Dec.
2
Droplet microfluidics: fundamentals and its advanced applications.微滴微流控技术:基础及其前沿应用
RSC Adv. 2020 Jul 23;10(46):27560-27574. doi: 10.1039/d0ra04566g. eCollection 2020 Jul 21.
4
Advances in capillary electrophoresis and the implications for drug discovery.毛细管电泳的进展及其对药物发现的影响。
Expert Opin Drug Discov. 2017 Feb;12(2):213-224. doi: 10.1080/17460441.2017.1268121. Epub 2016 Dec 9.

本文引用的文献

5
Torque-actuated valves for microfluidics.用于微流体的扭矩驱动阀。
Anal Chem. 2005 Aug 1;77(15):4726-33. doi: 10.1021/ac048303p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验