Suppr超能文献

一种连续样本加载系统:连接多孔板与微流控装置。

A serial sample loading system: interfacing multiwell plates with microfluidic devices.

作者信息

Rane Tushar D, Zec Helena C, Wang Tza-Huei

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Lab Autom. 2012 Oct;17(5):370-7. doi: 10.1177/2211068212455169. Epub 2012 Aug 10.

Abstract

There is an increasing demand for novel high-throughput screening (HTS) technologies in the pharmaceutical and biotechnological industries. The robotic sample-handling techniques currently used in these industries, although fast, are still limited to operating in multiwell plates with the sample volumes per reaction in the microliter regime. Digital microfluidics offers an alternative for reduction in sample volume consumption for HTS but lacks a reliable technique for transporting a large number of samples to the microfluidic device. In this report, we develop a technique for serial delivery of sample arrays to a microfluidic device from multiwell plates, through a single sample inlet. Under this approach, a serial array of sample plugs, separated by an immiscible carrier fluid, is loaded into a capillary and delivered to a microfluidic device. Similar approaches have been attempted in the past, however, either with a slower sample loading device such as a syringe pump or vacuum-based sample loading with limited driving pressure. We demonstrated the application of our positive-pressure-based serial sample loading (SSL) system to load a series of sample plugs into a capillary. The adaptability of the SSL system to generate sample plugs with a variety of volumes in a predictable manner was also demonstrated.

摘要

制药和生物技术行业对新型高通量筛选(HTS)技术的需求日益增长。目前这些行业中使用的机器人样本处理技术虽然速度快,但仍局限于在微孔板中操作,每个反应的样本体积处于微升范围。数字微流控为减少高通量筛选的样本体积消耗提供了一种替代方案,但缺乏将大量样本输送到微流控设备的可靠技术。在本报告中,我们开发了一种通过单个样本入口将样本阵列从微孔板串行输送到微流控设备的技术。在这种方法下,由不混溶的载液分隔的样本塞串行阵列被加载到毛细管中并输送到微流控设备。过去也曾尝试过类似的方法,然而,要么使用诸如注射泵之类的较慢的样本加载设备,要么使用驱动压力有限的基于真空的样本加载。我们展示了基于正压的串行样本加载(SSL)系统在将一系列样本塞加载到毛细管中的应用。还展示了SSL系统以可预测的方式生成各种体积的样本塞的适应性。

相似文献

1
A serial sample loading system: interfacing multiwell plates with microfluidic devices.
J Lab Autom. 2012 Oct;17(5):370-7. doi: 10.1177/2211068212455169. Epub 2012 Aug 10.
2
Robotic liquid handling and automation in epigenetics.
J Lab Autom. 2012 Oct;17(5):327-9. doi: 10.1177/2211068212457160. Epub 2012 Aug 29.
3
Ultra-High-Throughput Sample Preparation System for Lymphocyte Immunophenotyping Point-of-Care Diagnostics.
J Lab Autom. 2016 Oct;21(5):706-12. doi: 10.1177/2211068216634003. Epub 2016 Feb 26.
6
Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Nov;10(6):e1522. doi: 10.1002/wnan.1522. Epub 2018 May 24.
7
Automated reagent-dispensing system for microfluidic cell biology assays.
J Lab Autom. 2013 Dec;18(6):530-41. doi: 10.1177/2211068213504758. Epub 2013 Sep 19.
8
A power-free, parallel loading microfluidic reactor array for biochemical screening.
Sci Rep. 2018 Sep 12;8(1):13664. doi: 10.1038/s41598-018-31720-y.
10
A digital microfluidic method for multiplexed cell-based apoptosis assays.
Lab Chip. 2012 Feb 7;12(3):627-34. doi: 10.1039/c2lc20893h. Epub 2011 Dec 8.

引用本文的文献

1
Automated and miniaturized screening of antibiotic combinations robotic-printed combinatorial droplet platform.
Acta Pharm Sin B. 2024 Apr;14(4):1801-1813. doi: 10.1016/j.apsb.2023.11.027. Epub 2023 Nov 28.
2
Assessment of UTI Diagnostic Techniques Using the Fuzzy-PROMETHEE Model.
Diagnostics (Basel). 2023 Nov 10;13(22):3421. doi: 10.3390/diagnostics13223421.
4
Facile and scalable tubing-free sample loading for droplet microfluidics.
Sci Rep. 2022 Aug 3;12(1):13340. doi: 10.1038/s41598-022-17352-3.
5
Emerging platforms for high-throughput enzymatic bioassays.
Trends Biotechnol. 2023 Jan;41(1):120-133. doi: 10.1016/j.tibtech.2022.06.006. Epub 2022 Jul 18.
6
96-Well Oxygen Control Using a 3D-Printed Device.
Anal Chem. 2021 Feb 2;93(4):2570-2577. doi: 10.1021/acs.analchem.0c04627. Epub 2021 Jan 18.
7
Pressure-Driven Micro-Casting for Electrode Fabrication and Its Applications in Wear Grain Detections.
Materials (Basel). 2019 Nov 10;12(22):3710. doi: 10.3390/ma12223710.
8
micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output.
Lab Chip. 2020 Jan 7;20(1):93-106. doi: 10.1039/c9lc00512a. Epub 2019 Nov 8.
9
Versatile Analysis of DNA-Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection.
Anal Chem. 2019 Feb 19;91(4):2822-2830. doi: 10.1021/acs.analchem.8b04733. Epub 2019 Feb 6.
10
Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Nov;10(6):e1522. doi: 10.1002/wnan.1522. Epub 2018 May 24.

本文引用的文献

1
Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.
Lab Chip. 2011 Jul 7;11(13):2167-74. doi: 10.1039/c1lc20126c. Epub 2011 May 17.
2
Counting single molecules in sub-nanolitre droplets.
Lab Chip. 2010 Jan 21;10(2):161-4. doi: 10.1039/b917503b. Epub 2009 Oct 9.
3
Novel trends in high-throughput screening.
Curr Opin Pharmacol. 2009 Oct;9(5):580-8. doi: 10.1016/j.coph.2009.08.004. Epub 2009 Sep 21.
4
Droplet microfluidic technology for single-cell high-throughput screening.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14195-200. doi: 10.1073/pnas.0903542106. Epub 2009 Jul 15.
5
High-throughput quantitative polymerase chain reaction in picoliter droplets.
Anal Chem. 2008 Dec 1;80(23):8975-81. doi: 10.1021/ac801276c.
6
Microfluidic DNA amplification--a review.
Anal Chim Acta. 2009 Apr 13;638(2):115-25. doi: 10.1016/j.aca.2009.02.038. Epub 2009 Mar 4.
7
Droplet microfluidics.
Lab Chip. 2008 Feb;8(2):198-220. doi: 10.1039/b715524g. Epub 2008 Jan 11.
8
Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19243-8. doi: 10.1073/pnas.0607502103. Epub 2006 Dec 11.
9
Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
Lab Chip. 2006 Sep;6(9):1178-86. doi: 10.1039/b604993a. Epub 2006 Jul 27.
10
Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening.
Curr Opin Chem Biol. 2006 Jun;10(3):226-31. doi: 10.1016/j.cbpa.2006.04.004. Epub 2006 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验