Suppr超能文献

关闭皮质神经元集群会停止纹状体的上行状态,并在大鼠活体中引发皮质和纹状体慢振荡的相位扰动。

Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo.

作者信息

Kasanetz Fernando, Riquelme Luis A, O'Donnell Patricio, Murer M Gustavo

机构信息

Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.

出版信息

J Physiol. 2006 Nov 15;577(Pt 1):97-113. doi: 10.1113/jphysiol.2006.113050. Epub 2006 Aug 24.

Abstract

In vivo, cortical neurons and striatal medium spiny neurons (MSN) display robust subthreshold depolarizations (Up states) during which they are enabled to fire action potentials. In the cortex, Up states are believed to occur simultaneously in a neuronal ensemble and to be sustained by local network interactions. It is known that MSN are impelled into the Up state by extra-striatal (primarily cortical) inputs, but the mechanisms that sustain and determine the end of striatal Up states are still debated. Furthermore, it has not been established if brisk perturbations of ongoing cortical oscillations alter rhythmic transitions between Up and Down states in striatal neurons. Here we report that MSN Up states terminate abruptly when persistent activity in cortical ensembles providing afferents to a given striatal region is turned off by local electrical stimulation or ends spontaneously. In addition, we found that phase perturbations in MSN membrane potential slow oscillations induced by cortical stimulation replicate the stimulus-induced dynamics of spiking activity in cortical ensembles. Overall, these results suggest that striatal Up states are single-cell subthreshold representations of episodes of persistent spiking in cortical ensembles. A precise spatial and temporal alignment between episodes of cortical persistent activity and striatal Up states would allow MSN to detect specific cortical inputs embedded within a more general cortical signal.

摘要

在体内,皮层神经元和纹状体中等棘状神经元(MSN)在阈下时会表现出强烈的去极化(Up状态),在此期间它们能够产生动作电位。在皮层中,Up状态被认为在神经元群体中同时发生,并由局部网络相互作用维持。已知MSN通过纹状体外部(主要是皮层)输入被驱动到Up状态,但维持和决定纹状体Up状态结束的机制仍存在争议。此外,目前尚未确定正在进行的皮层振荡的快速扰动是否会改变纹状体神经元在Up和Down状态之间的节律转换。在此我们报告,当通过局部电刺激关闭或自发结束向给定纹状体区域提供传入信号的皮层群体中的持续活动时,MSN的Up状态会突然终止。此外,我们发现皮层刺激诱导的MSN膜电位慢振荡中的相位扰动复制了皮层群体中刺激诱导的尖峰活动动态。总体而言,这些结果表明纹状体Up状态是皮层群体中持续尖峰发作的单细胞阈下表现。皮层持续活动发作与纹状体Up状态之间精确的空间和时间对齐将使MSN能够检测嵌入更一般皮层信号中的特定皮层输入。

相似文献

2
Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
J Neurosci. 2005 Apr 13;25(15):3857-69. doi: 10.1523/JNEUROSCI.5027-04.2005.
3
Acute nigro-striatal blockade alters cortico-striatal encoding: an in vivo electrophysiological study.
Exp Neurol. 2013 Sep;247:730-6. doi: 10.1016/j.expneurol.2013.03.018. Epub 2013 Mar 26.
4
6
Frontal cortical afferents facilitate striatal nitric oxide transmission in vivo via a NMDA receptor and neuronal NOS-dependent mechanism.
J Neurochem. 2007 Nov;103(3):1145-56. doi: 10.1111/j.1471-4159.2007.04811.x. Epub 2007 Jul 31.
7
Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro.
J Neurosci. 2003 Oct 8;23(27):9123-32. doi: 10.1523/JNEUROSCI.23-27-09123.2003.
10
Neural dynamics in cortex-striatum co-cultures--II. Spatiotemporal characteristics of neuronal activity.
Neuroscience. 1996 Feb;70(4):893-924. doi: 10.1016/0306-4522(95)00405-x.

引用本文的文献

1
Attractor and integrator networks in the brain.
Nat Rev Neurosci. 2022 Dec;23(12):744-766. doi: 10.1038/s41583-022-00642-0. Epub 2022 Nov 3.
2
Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons.
J Neurosci. 2022 Nov 23;42(47):8767-8779. doi: 10.1523/JNEUROSCI.1992-21.2022. Epub 2022 Oct 14.
3
Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity.
Nat Commun. 2020 Aug 10;11(1):3996. doi: 10.1038/s41467-020-17763-8.
4
Striatal network modeling in Huntington's Disease.
PLoS Comput Biol. 2020 Apr 17;16(4):e1007648. doi: 10.1371/journal.pcbi.1007648. eCollection 2020 Apr.
5
Neuropilin 2 Signaling Mediates Corticostriatal Transmission, Spine Maintenance, and Goal-Directed Learning in Mice.
J Neurosci. 2019 Nov 6;39(45):8845-8859. doi: 10.1523/JNEUROSCI.1006-19.2019. Epub 2019 Sep 20.
6
Local Field Potentials Reflect Dopaminergic and Non-Dopaminergic Activities within the Primate Midbrain.
Neuroscience. 2019 Feb 10;399:167-183. doi: 10.1016/j.neuroscience.2018.12.016. Epub 2018 Dec 19.
7
An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making.
Annu Rev Psychol. 2019 Jan 4;70:53-76. doi: 10.1146/annurev-psych-010418-102824. Epub 2018 Sep 27.
8
Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures.
Sci Rep. 2018 May 17;8(1):7765. doi: 10.1038/s41598-018-25770-5.
9
Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease.
Front Aging Neurosci. 2017 Nov 3;9:358. doi: 10.3389/fnagi.2017.00358. eCollection 2017.
10
Loss of Homeostasis in the Direct Pathway in a Mouse Model of Asymptomatic Parkinson's Disease.
J Neurosci. 2016 May 25;36(21):5686-98. doi: 10.1523/JNEUROSCI.0492-15.2016.

本文引用的文献

1
Excitatory GABAergic effects in striatal projection neurons.
J Neurophysiol. 2006 Feb;95(2):1285-90. doi: 10.1152/jn.00598.2005. Epub 2005 Oct 26.
3
Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9032-7. doi: 10.1073/pnas.0503541102. Epub 2005 Jun 14.
4
The cortex as a central pattern generator.
Nat Rev Neurosci. 2005 Jun;6(6):477-83. doi: 10.1038/nrn1686.
5
Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
J Neurosci. 2005 Apr 13;25(15):3857-69. doi: 10.1523/JNEUROSCI.5027-04.2005.
6
Neural bases of cognitive ERPs: more than phase reset.
J Cogn Neurosci. 2004 Nov;16(9):1595-604. doi: 10.1162/0898929042568514.
7
Persistent neural activity: prevalence and mechanisms.
Curr Opin Neurobiol. 2004 Dec;14(6):675-84. doi: 10.1016/j.conb.2004.10.017.
8
Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes.
Brain Res Cogn Brain Res. 2004 Oct;21(2):139-70. doi: 10.1016/j.cogbrainres.2004.06.012.
9
The thalamostriatal system: a highly specific network of the basal ganglia circuitry.
Trends Neurosci. 2004 Sep;27(9):520-7. doi: 10.1016/j.tins.2004.07.004.
10
Putting a spin on the dorsal-ventral divide of the striatum.
Trends Neurosci. 2004 Aug;27(8):468-74. doi: 10.1016/j.tins.2004.06.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验