Kasanetz Fernando, Riquelme Luis A, Murer M Gustavo
Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires (1121), Argentina.
J Physiol. 2002 Sep 1;543(Pt 2):577-89. doi: 10.1113/jphysiol.2002.0024786.
In anaesthetised animals, the very negative resting membrane potential of striatal spiny neurones (down state) is interrupted periodically by depolarising plateaux (up states) which are probably driven by excitatory input. In the absence of active synaptic input, as occurs in vitro, potassium currents hold the membrane potential of striatal spiny neurones in the down state. Because striatal spiny neurones fire action potentials only during the up state, these plateau depolarisations have been perceived as enabling events that allow information processing through cerebral cortex-basal ganglia circuits. Recent studies have demonstrated that the robust membrane potential fluctuation of spiny neurones is strongly correlated to the slow electroencephalographic rhythms that are typical of slow wave sleep and anaesthesia. To further understand the impact of cortical activity states on striatal function, we studied the membrane potential of striatal neurones during cortical desynchronised states. Simultaneous in vivo recordings of striatal neurones and the electrocorticogram in urethane-anaesthetised rats revealed that rhythmic alternation between up and down states was disrupted during episodes of spontaneous or induced cortical desynchronisation. Instead of showing robust two-state fluctuations, the membrane potential of striatal neurones displayed a persisting depolarised state with fast, low-amplitude modulations. Spiny neurones remained in this persistent up state until the cortex resumed ~1 Hz synchronous activity. Most of the recorded neurones exhibited a low firing probability, irrespective of the cortical activity state. Time series analysis failed to reveal significant correlations between the membrane potential of striatal neurones and the desynchronised electrocorticogram. Our results suggest that during cortical desynchronisation continuous uncorrelated excitatory input sustains the membrane potential of striatal neurones in a persisting depolarised state, but that substantial additional input is necessary to impel the neurones to threshold. Our data support that the prevailing cortical activity state determines the duration of the enabling depolarising events that take place in striatal spiny neurones.
在麻醉动物中,纹状体棘状神经元非常负的静息膜电位(下行状态)会被去极化平台期(上行状态)周期性打断,这些平台期可能由兴奋性输入驱动。在没有活跃突触输入的情况下,比如在体外实验中,钾电流会使纹状体棘状神经元的膜电位保持在下行状态。由于纹状体棘状神经元仅在上行状态期间产生动作电位,所以这些平台期去极化被视为允许通过大脑皮层 - 基底神经节回路进行信息处理的促成事件。最近的研究表明,棘状神经元强烈的膜电位波动与慢波睡眠和麻醉典型的慢脑电图节律密切相关。为了进一步了解皮层活动状态对纹状体功能的影响,我们研究了皮层去同步化状态下纹状体神经元的膜电位。在乌拉坦麻醉的大鼠中同时进行纹状体神经元和脑电图的体内记录发现,在自发或诱导的皮层去同步化期间,上行和下行状态之间的节律性交替被打乱。纹状体神经元的膜电位没有表现出强烈的双态波动,而是呈现出持续的去极化状态,并伴有快速、低幅度的调制。棘状神经元一直处于这种持续的上行状态,直到皮层恢复约1赫兹的同步活动。大多数记录的神经元无论皮层活动状态如何,都表现出低放电概率。时间序列分析未能揭示纹状体神经元的膜电位与去同步化脑电图之间的显著相关性。我们的结果表明,在皮层去同步化期间,持续不相关的兴奋性输入使纹状体神经元的膜电位维持在持续的去极化状态,但需要大量额外输入才能将神经元驱动至阈值。我们的数据支持这样的观点,即占主导地位的皮层活动状态决定了纹状体棘状神经元中发生的促成去极化事件的持续时间。