Suppr超能文献

纹状体网络模型在亨廷顿病中的研究。

Striatal network modeling in Huntington's Disease.

机构信息

IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America.

Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 17;16(4):e1007648. doi: 10.1371/journal.pcbi.1007648. eCollection 2020 Apr.

Abstract

Medium spiny neurons (MSNs) comprise over 90% of cells in the striatum. In vivo MSNs display coherent burst firing cell assembly activity patterns, even though isolated MSNs do not burst fire intrinsically. This activity is important for the learning and execution of action sequences and is characteristically dysregulated in Huntington's Disease (HD). However, how dysregulation is caused by the various neural pathologies affecting MSNs in HD is unknown. Previous modeling work using simple cell models has shown that cell assembly activity patterns can emerge as a result of MSN inhibitory network interactions. Here, by directly estimating MSN network model parameters from single unit spiking data, we show that a network composed of much more physiologically detailed MSNs provides an excellent quantitative fit to wild type (WT) mouse spiking data, but only when network parameters are appropriate for the striatum. We find the WT MSN network is situated in a regime close to a transition from stable to strongly fluctuating network dynamics. This regime facilitates the generation of low-dimensional slowly varying coherent activity patterns and confers high sensitivity to variations in cortical driving. By re-estimating the model on HD spiking data we discover network parameter modifications are consistent across three very different types of HD mutant mouse models (YAC128, Q175, R6/2). In striking agreement with the known pathophysiology we find feedforward excitatory drive is reduced in HD compared to WT mice, while recurrent inhibition also shows phenotype dependency. We show that these modifications shift the HD MSN network to a sub-optimal regime where higher dimensional incoherent rapidly fluctuating activity predominates. Our results provide insight into a diverse range of experimental findings in HD, including cognitive and motor symptoms, and may suggest new avenues for treatment.

摘要

中间棘神经元(MSNs)构成纹状体中超过 90%的细胞。在体内,MSNs 显示出连贯的爆发式放电细胞集合活动模式,尽管分离的 MSNs 本身不会爆发式放电。这种活动对于动作序列的学习和执行很重要,并且在亨廷顿病(HD)中特征性地失调。然而,各种影响 HD 中 MSNs 的神经病理学如何导致失调尚不清楚。以前使用简单细胞模型的建模工作表明,细胞集合活动模式可以作为 MSN 抑制性网络相互作用的结果而出现。在这里,我们通过直接从单个单元放电数据估计 MSN 网络模型参数,表明由更具生理细节的 MSNs 组成的网络提供了对野生型(WT)小鼠放电数据的出色定量拟合,但仅当网络参数适合纹状体时。我们发现 WT MSN 网络位于接近从稳定到强波动网络动力学转变的状态。这种状态有利于生成低维缓慢变化的相干活动模式,并对皮质驱动的变化具有高度敏感性。通过重新在 HD 放电数据上估计模型,我们发现网络参数修改在三种非常不同类型的 HD 突变体小鼠模型(YAC128、Q175、R6/2)中是一致的。与已知的病理生理学惊人一致的是,我们发现与 WT 小鼠相比,HD 中的前馈兴奋性驱动降低,而反复抑制也表现出表型依赖性。我们表明,这些修改将 HD MSN 网络转移到一个次优状态,其中更高维的非相干快速波动活动占主导地位。我们的结果深入了解了 HD 中的各种实验发现,包括认知和运动症状,并且可能为治疗提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e7d/7197869/3909813b1e6a/pcbi.1007648.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验