Fukazawa Takuya, Matsuoka Junji, Naomoto Yoshio, Nakai Toru, Durbin Mary L, Kojima Itaru, Lakey Jonathan R T, Tanaka Noriaki
First Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho 2-5-1, Okayama 700-8558, Japan.
Exp Cell Res. 2006 Oct 15;312(17):3404-12. doi: 10.1016/j.yexcr.2006.07.015. Epub 2006 Jul 28.
Recently, it has been reported that islet transplantation into patients with Type 1 diabetes may achieve insulin independence for a year or longer [Shapiro et al., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med. 343 (2000) 230-238]. However, the amount of donor islet tissue is limited, therefore, multiple approaches are being explored to generate insulin-producing cells in vitro. Some promising results have been obtained using mouse and human stem cells and progenitor cells [Soria et al., From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus, Diabetologia. 4 (2001) 407-415; Lechner et al., Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus, Am J Physiol Endocrinol Metab. 284 (2003) 259-266; Bonner-Weir et al., In vitro cultivation of human islets from expanded ductal tissue, Proc Natl Acad Sci U S A, 97 (2000) 7999-8004; Assady et al., Insulin production by human embryonic stem cells, 50 (2001) Diabetes 1691-1697]. However, the efficiency of obtaining populations with high numbers of differentiated cells has been poor. In order to improve the efficiency of producing and selecting insulin-producing cells from undifferentiated cells, we have designed a novel beta-cell specific and glucose responsive promoter system designated pGL3.hINS-363 3x. This artificial promoter system exhibits significant luciferase activity not only in insulin-producing MIN6 m9 cells but also in isolated human islets. The pGL3.hINS-363 3x construct shows no activity in non-insulin-producing cells in low glucose conditions (2 mM glucose) but demonstrates significant activity and beta-cell specificity in high glucose conditions (16 mM glucose). Furthermore, pGL3.hINS-363 3x shows significant promoter activity in differentiated AR42J cells that can produce insulin after activin A and betacellulin treatment. Here, we describe a novel beta-cell specific and glucose responsive artificial promoter system designed for analyzing and sorting beta-like insulin-producing cells that have differentiated from stem cells or other progenitor cells.
最近,有报道称,将胰岛移植到1型糖尿病患者体内可能实现长达一年或更长时间的胰岛素非依赖状态[夏皮罗等人,《使用无糖皮质激素免疫抑制方案对7例1型糖尿病患者进行胰岛移植》,《新英格兰医学杂志》。343 (2000) 230 - 238]。然而,供体胰岛组织的数量有限,因此,人们正在探索多种方法在体外生成胰岛素产生细胞。使用小鼠和人类干细胞及祖细胞已取得了一些有前景的结果[索里亚等人,《从干细胞到β细胞:糖尿病细胞治疗的新策略》,《糖尿病学》。4 (2001) 407 - 415;莱希纳等人,《源自成人组织的干/祖细胞:治疗糖尿病的潜力》,《美国生理学杂志 内分泌与代谢》。284 (2003) 259 - 266;邦纳 - 韦尔等人,《从扩增的导管组织体外培养人胰岛》,《美国国家科学院院刊》,97 (2000) 7999 - 8004;阿萨迪等人,《人胚胎干细胞产生胰岛素》,50 (2001)《糖尿病》1691 - 1697]。然而,获得大量分化细胞群体的效率一直很低。为了提高从未分化细胞中产生和选择胰岛素产生细胞的效率,我们设计了一种新型的β细胞特异性且对葡萄糖有反应的启动子系统,命名为pGL3.hINS - 363 3x。这种人工启动子系统不仅在产生胰岛素的MIN6 m9细胞中,而且在分离的人胰岛中都表现出显著的荧光素酶活性。pGL3.hINS - 363 3x构建体在低葡萄糖条件(2 mM葡萄糖)下的非胰岛素产生细胞中无活性,但在高葡萄糖条件(16 mM葡萄糖)下表现出显著活性和β细胞特异性。此外,pGL3.hINS - 363 3x在经激活素A和β细胞素处理后能产生胰岛素的分化AR42J细胞中显示出显著的启动子活性。在此,我们描述了一种新型的β细胞特异性且对葡萄糖有反应的人工启动子系统,该系统旨在分析和分选已从干细胞或其他祖细胞分化而来的β样胰岛素产生细胞。