Suppr超能文献

低能量表面声波有效预防医疗器械上微生物生物膜的形成。

Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves.

作者信息

Hazan Zadik, Zumeris Jona, Jacob Harold, Raskin Hanan, Kratysh Gera, Vishnia Moshe, Dror Naama, Barliya Tilda, Mandel Mathilda, Lavie Gad

机构信息

Nanovibronix Corporation, Nesher, Israel.

出版信息

Antimicrob Agents Chemother. 2006 Dec;50(12):4144-52. doi: 10.1128/AAC.00418-06. Epub 2006 Aug 28.

Abstract

Low-energy surface acoustic waves generated from electrically activated piezo elements are shown to effectively prevent microbial biofilm formation on indwelling medical devices. The development of biofilms by four different bacteria and Candida species is prevented when such elastic waves with amplitudes in the nanometer range are applied. Acoustic-wave-activated Foley catheters have all their surfaces vibrating with longitudinal and transversal dispersion vectors homogeneously surrounding the catheter surfaces. The acoustic waves at the surface are repulsive to bacteria and interfere with the docking and attachment of planktonic microorganisms to solid surfaces that constitute the initial phases of microbial biofilm development. FimH-mediated adhesion of uropathogenic Escherichia coli to guinea pig erythrocytes was prevented at power densities below thresholds that activate bacterial force sensor mechanisms. Elevated power densities dramatically enhanced red blood cell aggregation. We inserted Foley urinary catheters attached with elastic-wave-generating actuators into the urinary tracts of male rabbits. The treatment with the elastic acoustic waves maintained urine sterility for up to 9 days compared to 2 days in control catheterized animals. Scanning electron microscopy and bioburden analyses revealed diminished biofilm development on these catheters. The ability to prevent biofilm formation on indwelling devices and catheters can benefit the implanted medical device industry.

摘要

研究表明,由电激活压电元件产生的低能量表面声波可有效防止微生物在留置医疗设备上形成生物膜。当施加纳米级振幅的弹性波时,可阻止四种不同细菌和念珠菌属形成生物膜。声波激活的导尿管其所有表面都在振动,纵向和横向色散矢量均匀地围绕着导管表面。表面的声波对细菌具有排斥作用,并干扰浮游微生物与构成微生物生物膜形成初始阶段的固体表面的对接和附着。在低于激活细菌力传感器机制阈值的功率密度下,可防止致病性大肠杆菌通过FimH介导黏附于豚鼠红细胞。功率密度升高会显著增强红细胞聚集。我们将附有弹性波产生致动器的导尿管插入雄性兔的尿道。与对照插管动物的2天相比,弹性声波治疗可使尿液无菌状态维持长达9天。扫描电子显微镜和生物负载分析显示,这些导管上的生物膜形成减少。防止在留置设备和导管上形成生物膜的能力可为植入式医疗设备行业带来益处。

相似文献

1
Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves.
Antimicrob Agents Chemother. 2006 Dec;50(12):4144-52. doi: 10.1128/AAC.00418-06. Epub 2006 Aug 28.
2
The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):447-55. doi: 10.1111/j.1574-695X.2010.00696.x. Epub 2010 May 12.
3
Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters.
J Antimicrob Chemother. 2006 Feb;57(2):266-72. doi: 10.1093/jac/dki447. Epub 2005 Dec 9.
4
An electrified catheter to resist encrustation by Proteus mirabilis biofilm.
J Urol. 2005 Sep;174(3):1129-32. doi: 10.1097/01.ju.0000168618.79096.cb.
6
Isolation and identification of biofilm microorganisms from silicone gastrostomy devices.
J Pediatr Surg. 2003 Feb;38(2):216-20. doi: 10.1053/jpsu.2003.50046.
7
Bacterial biofilms in patients with indwelling urinary catheters.
Nat Clin Pract Urol. 2008 Nov;5(11):598-608. doi: 10.1038/ncpuro1231. Epub 2008 Oct 14.
9
Observations on the adherence of Proteus mirabilis onto polymer surfaces.
J Appl Microbiol. 2006 May;100(5):1028-33. doi: 10.1111/j.1365-2672.2006.02840.x.
10
Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.
J Hosp Infect. 2008 Aug;69(4):350-60. doi: 10.1016/j.jhin.2008.04.031. Epub 2008 Jun 11.

引用本文的文献

2
Physical communication pathways in bacteria: an extra layer to quorum sensing.
Biophys Rev. 2025 Mar 4;17(2):667-685. doi: 10.1007/s12551-025-01290-1. eCollection 2025 Apr.
3
Ultrasound-activated cilia for biofilm control in indwelling medical devices.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2418938122. doi: 10.1073/pnas.2418938122. Epub 2025 Apr 28.
4
Antimicrobial Biomaterials Based on Physical and Physicochemical Action.
Adv Healthc Mater. 2024 Dec;13(32):e2402001. doi: 10.1002/adhm.202402001. Epub 2024 Sep 20.
6
Harnessing Standing Sound Waves to Treat Intraocular Blood Cell Accumulation.
Micromachines (Basel). 2024 Jun 15;15(6):786. doi: 10.3390/mi15060786.
7
Sono-processes: Emerging systems and their applicability within the (bio-)medical field.
Ultrason Sonochem. 2023 Nov;100:106630. doi: 10.1016/j.ultsonch.2023.106630. Epub 2023 Oct 4.
8
Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment.
Antibiotics (Basel). 2023 Apr 19;12(4):778. doi: 10.3390/antibiotics12040778.
9
Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms.
J Microbiol Biotechnol. 2021 Jan 28;31(1):1-7. doi: 10.4014/jmb.2010.10021.
10
The use of low-cost brewery waste product for the production of surfactin as a natural microbial biocide.
Biotechnol Rep (Amst). 2020 Oct 16;28:e00537. doi: 10.1016/j.btre.2020.e00537. eCollection 2020 Dec.

本文引用的文献

1
Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics.
Am J Infect Control. 2005 Mar;33(2):78-82. doi: 10.1016/j.ajic.2004.08.002.
2
Catheter-associated infections: pathogenesis affects prevention.
Arch Intern Med. 2004 Apr 26;164(8):842-50. doi: 10.1001/archinte.164.8.842.
3
Bacterial adhesion to target cells enhanced by shear force.
Cell. 2002 Jun 28;109(7):913-23. doi: 10.1016/s0092-8674(02)00796-1.
5
Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth.
J Bacteriol. 2001 Nov;183(22):6579-89. doi: 10.1128/JB.183.22.6579-6589.2001.
6
Implant infections: a haven for opportunistic bacteria.
J Hosp Infect. 2001 Oct;49(2):87-93. doi: 10.1053/jhin.2001.1052.
7
Engineering out the risk for infection with urinary catheters.
Emerg Infect Dis. 2001 Mar-Apr;7(2):342-7. doi: 10.3201/eid0702.010240.
8
Riddle of biofilm resistance.
Antimicrob Agents Chemother. 2001 Apr;45(4):999-1007. doi: 10.1128/AAC.45.4.999-1007.2001.
9
Mechanisms of biofilm resistance to antimicrobial agents.
Trends Microbiol. 2001 Jan;9(1):34-9. doi: 10.1016/s0966-842x(00)01913-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验