Krings Gregor, Bastia Deepak
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
Mol Cell Biol. 2006 Nov;26(21):8061-74. doi: 10.1128/MCB.01102-06. Epub 2006 Aug 28.
DNA replication forks pause at programmed fork barriers within nontranscribed regions of the ribosomal DNA (rDNA) genes of many eukaryotes to coordinate and regulate replication, transcription, and recombination. The mechanism of eukaryotic fork arrest remains unknown. In Schizosaccharomyces pombe, the promiscuous DNA binding protein Sap1 not only causes polar fork arrest at the rDNA fork barrier Ter1 but also regulates mat1 imprinting at SAS1 without fork pausing. Towards an understanding of eukaryotic fork arrest, we probed the interactions of Sap1 with Ter1 as contrasted with SAS1. The Sap1 dimer bound Ter1 with high affinity at one face of the DNA, contacting successive major grooves. The complex displayed translational symmetry. In contrast, Sap1 subunits approached SAS1 from opposite helical faces, forming a low-affinity complex with mirror image rotational symmetry. The alternate symmetries were reflected in distinct Sap1-induced helical distortions. Importantly, modulating protein-DNA interactions of the fork-proximal Sap1 subunit with the nonnatural binding site DR2 affected blocking efficiency without changes in binding affinity or binding mode but with alterations in Sap1-induced DNA distortion. The results reveal that Sap1-DNA affinity alone is insufficient to account for fork arrest and suggest that Sap1 binding-induced structural changes may result in formation of a competent fork-blocking complex.
在许多真核生物的核糖体DNA(rDNA)基因的非转录区域内,DNA复制叉会在程序化的叉形障碍处暂停,以协调和调节复制、转录及重组过程。真核生物叉形停滞的机制尚不清楚。在粟酒裂殖酵母中,杂乱的DNA结合蛋白Sap1不仅会在rDNA叉形障碍Ter1处导致极性叉形停滞,还会在不发生叉形暂停的情况下调节SAS1处的mat1印记。为了深入了解真核生物的叉形停滞,我们探究了Sap1与Ter1以及与SAS1的相互作用并进行对比。Sap1二聚体在DNA的一个面上以高亲和力结合Ter1,接触连续的大沟。该复合物呈现平移对称性。相比之下,Sap1亚基从相反的螺旋面接近SAS1,形成具有镜像旋转对称性的低亲和力复合物。不同的对称性反映在Sap1诱导的不同螺旋扭曲中。重要的是,调节叉形近端Sap1亚基与非天然结合位点DR2的蛋白质-DNA相互作用会影响阻断效率,而结合亲和力或结合模式没有变化,但Sap1诱导的DNA扭曲发生了改变。结果表明,仅Sap1-DNA亲和力不足以解释叉形停滞,这表明Sap1结合诱导的结构变化可能导致形成有效的叉形阻断复合物。