Suppr超能文献

真核生物基因组中天然障碍对DNA复制的调控

Regulation of DNA Replication through Natural  Impediments in the Eukaryotic Genome.

作者信息

Gadaleta Mariana C, Noguchi Eishi

机构信息

Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.

出版信息

Genes (Basel). 2017 Mar 7;8(3):98. doi: 10.3390/genes8030098.

Abstract

All living organisms need to duplicate their genetic information while protecting it from unwanted mutations, which can lead to genetic disorders and cancer development. Inaccuracies during DNA replication are the major cause of genomic instability, as replication forks are prone to stalling and collapse, resulting in DNA damage. The presence of exogenous DNA damaging agents as well as endogenous difficult-to-replicate DNA regions containing DNA-protein complexes, repetitive DNA, secondary DNA structures, or transcribing RNA polymerases, increases the risk of genomic instability and thus threatens cell survival. Therefore, understanding the cellular mechanisms required to preserve the genetic information during S phase is of paramount importance. In this review, we will discuss our current understanding of how cells cope with these natural impediments in order to prevent DNA damage and genomic instability during DNA replication.

摘要

所有生物都需要复制其遗传信息,同时保护其免受有害突变的影响,这些突变可能导致遗传疾病和癌症发展。DNA复制过程中的不准确是基因组不稳定的主要原因,因为复制叉容易停滞和崩溃,从而导致DNA损伤。外源性DNA损伤剂以及含有DNA-蛋白质复合物、重复DNA、二级DNA结构或转录RNA聚合酶的内源性难以复制的DNA区域的存在,增加了基因组不稳定的风险,从而威胁细胞存活。因此,了解在S期保存遗传信息所需的细胞机制至关重要。在这篇综述中,我们将讨论我们目前对细胞如何应对这些自然障碍以防止DNA复制过程中的DNA损伤和基因组不稳定的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead4/5368702/fa7857b21115/genes-08-00098-g001.jpg

相似文献

2
Replication fork stalling at natural impediments.
Microbiol Mol Biol Rev. 2007 Mar;71(1):13-35. doi: 10.1128/MMBR.00030-06.
3
Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission.
Mutat Res. 2018 Mar;808:62-73. doi: 10.1016/j.mrfmmm.2017.08.002. Epub 2017 Aug 14.
4
Chromatin immunoprecipitation to detect DNA replication and repair factors.
Methods Mol Biol. 2015;1300:169-86. doi: 10.1007/978-1-4939-2596-4_12.
5
Impediments to replication fork movement: stabilisation, reactivation and genome instability.
Chromosoma. 2013 Mar;122(1-2):33-45. doi: 10.1007/s00412-013-0398-9. Epub 2013 Feb 28.
7
Replication fork dynamics and the DNA damage response.
Biochem J. 2012 Apr 1;443(1):13-26. doi: 10.1042/BJ20112100.
9
Maintenance of fork integrity at damaged DNA and natural pause sites.
DNA Repair (Amst). 2007 Jul 1;6(7):900-13. doi: 10.1016/j.dnarep.2007.02.004. Epub 2007 Mar 26.
10
DNA Replication Origins and Fork Progression at Mammalian Telomeres.
Genes (Basel). 2017 Mar 28;8(4):112. doi: 10.3390/genes8040112.

引用本文的文献

1
Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity.
Nat Plants. 2024 Jun;10(6):857-873. doi: 10.1038/s41477-024-01678-z. Epub 2024 Apr 24.
2
Cellular Responses to Widespread DNA Replication Stress.
Int J Mol Sci. 2023 Nov 29;24(23):16903. doi: 10.3390/ijms242316903.
3
Genome maintenance meets mechanobiology.
Chromosoma. 2024 Jan;133(1):15-36. doi: 10.1007/s00412-023-00807-5. Epub 2023 Aug 15.
4
Characterization of Unidirectional Replication Forks in the Mouse Genome.
Int J Mol Sci. 2023 Jun 1;24(11):9611. doi: 10.3390/ijms24119611.
5
Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes.
Front Cell Dev Biol. 2021 May 28;9:672510. doi: 10.3389/fcell.2021.672510. eCollection 2021.
7
DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons.
Genes (Basel). 2020 Jun 10;11(6):642. doi: 10.3390/genes11060642.
8
Working on Genomic Stability: From the S-Phase to Mitosis.
Genes (Basel). 2020 Feb 20;11(2):225. doi: 10.3390/genes11020225.
9
Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy.
Genes (Basel). 2020 Jan 15;11(1):99. doi: 10.3390/genes11010099.
10
Transcription is a major driving force for plastid genome instability in Arabidopsis.
PLoS One. 2019 Apr 3;14(4):e0214552. doi: 10.1371/journal.pone.0214552. eCollection 2019.

本文引用的文献

1
Increased global transcription activity as a mechanism of replication stress in cancer.
Nat Commun. 2016 Oct 11;7:13087. doi: 10.1038/ncomms13087.
2
Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity.
PLoS Genet. 2016 Sep 9;12(9):e1006238. doi: 10.1371/journal.pgen.1006238. eCollection 2016 Sep.
3
Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3639-48. doi: 10.1073/pnas.1607552113. Epub 2016 Jun 13.
5
Timeless protection of telomeres.
Curr Genet. 2016 Nov;62(4):725-730. doi: 10.1007/s00294-016-0599-x. Epub 2016 Apr 11.
6
Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.
PLoS Genet. 2016 Mar 18;12(3):e1005943. doi: 10.1371/journal.pgen.1005943. eCollection 2016 Mar.
7
G-quadruplexes and helicases.
Nucleic Acids Res. 2016 Mar 18;44(5):1989-2006. doi: 10.1093/nar/gkw079. Epub 2016 Feb 15.
8
G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome.
PLoS One. 2016 Jan 4;11(1):e0146174. doi: 10.1371/journal.pone.0146174. eCollection 2016.
9
What is the DNA repair defect underlying Fanconi anemia?
Curr Opin Cell Biol. 2015 Dec;37:49-60. doi: 10.1016/j.ceb.2015.09.002. Epub 2015 Nov 11.
10
Arrested replication forks guide retrotransposon integration.
Science. 2015 Sep 25;349(6255):1549-53. doi: 10.1126/science.aaa3810.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验