Krzyzanski Wojciech, Dmochowski Jacek, Matsushima Nobuko, Jusko William J
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
J Pharmacokinet Pharmacodyn. 2006 Oct;33(5):635-55. doi: 10.1007/s10928-006-9028-y. Epub 2006 Aug 29.
The application of D-optimization and the assessment of bias and precision of parameter estimates for four basic pharmacodynamic (PD) indirect response (IDR) models for ascending doses was examined using simulated data. While D-optimization provided four sampling times, each IDR model was used to generate eight data points per dose level. The PD parameters were: input rate constant (k (in)), disposition rate constant (k (out)), capacity constant (I (max) or S (max)), and sensitivity constant (IC (50) or SC (50)). A monoexponential pharmacokinetic function was applied with single doses increased by a factor of 10 to generate responses that vary from weak to fully saturable. For each dose, 100 replications of response data were simulated using independent normally distributed errors of CV = 20%. The original IDR model was fitted and PD parameters estimated. Histograms and descriptive statistics were generated. All parameters exhibited asymmetric distributions with positive coefficients of skewness except for I (max). Higher doses resulted in unbiased estimates of all PD parameters. The precision of parameter estimates improved with increasing doses except for IC (50) and SC (50) indicating that a single dose experimental design cannot be corrected by increasing dose in order to improve precision of estimates of IC (50) or SC (50). Highest variability was for IC (50) and SC (50) parameters. This study provides new insights into optimum study designs and recovery of parameters for basic IDR models.
利用模拟数据研究了D - 优化的应用以及四种基本药效学(PD)间接响应(IDR)模型在递增剂量时参数估计的偏差和精密度评估。虽然D - 优化提供了四个采样时间,但每个IDR模型用于在每个剂量水平生成八个数据点。PD参数包括:输入速率常数(k (in))、处置速率常数(k (out))、容量常数(I (max) 或S (max))以及敏感性常数(IC (50) 或SC (50))。应用单指数药代动力学函数,单剂量以10倍因子增加以产生从弱到完全饱和变化的响应。对于每个剂量,使用CV = 20% 的独立正态分布误差模拟100次响应数据重复。拟合原始IDR模型并估计PD参数。生成直方图和描述性统计量。除I (max) 外所有参数均呈现不对称分布且偏度系数为正。更高剂量导致所有PD参数的无偏估计。除IC (50) 和SC (50) 外,参数估计的精密度随剂量增加而提高,这表明单剂量实验设计不能通过增加剂量来校正以提高IC (50) 或SC (50) 估计的精密度。IC (50) 和SC (50) 参数的变异性最高。本研究为基本IDR模型的最佳研究设计和参数恢复提供了新的见解。