Suppr超能文献

改变天然细胞寿命分布的药物的基本药效学模型。

Basic pharmacodynamic models for agents that alter the lifespan distribution of natural cells.

作者信息

Krzyzanski Wojciech, Perez-Ruixo Juan Jose, Vermeulen An

机构信息

Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2008 Jun;35(3):349-77. doi: 10.1007/s10928-008-9092-6. Epub 2008 Jun 13.

Abstract

A new class of basic indirect pharmacodynamic models for agents that alter the loss of natural cells based on a lifespan concept are presented. The lifespan indirect response (LIDR) models assume that cells (R) are produced at a constant rate (k(in)), survive during a certain duration T(R), and finally are lost. The rate of cell loss is equal to the production rate but is delayed by T(R). A therapeutic agent can increase or decrease the baseline cell lifespan to a new cell lifespan, T(D), by temporally changing the proportion of cells belonging to the two modes of the lifespan distribution. Therefore, the change of lifespan at time t is described according to the Hill function, H(C(t)), with capacity (E(max)) and sensitivity (EC(50)), and the pharmacokinetic function C(t). A one-compartment cell model was examined through simulations to describe the role of pharmacokinetics, pharmacodynamics and cell properties for the cases where the drug increases (T(D) > T(R)) or decreases (T(D) < T(R)) the cell lifespan. The area under the effect curve (AUCE) and explicit solutions of LIDR models for large doses were derived. The applicability of the model was further illustrated using the effects of recombinant human erythropoietin (rHuEPO) on reticulocytes. The cases of both stimulation of the proliferation of bone marrow progenitor cells and the increase of reticulocyte lifespans were used to describe mean data from healthy subjects who received single subcutaneous doses of rHuEPO ranging from 20 to 160 kIU. rHuEPO is about 4.5-fold less potent in increasing reticulocyte survival than in stimulating the precursor production. A maximum increase of 4.1 days in the mean reticulocyte lifespan was estimated and the effect duration on the lifespan distribution was dose dependent. LIDR models share similar properties with basic indirect response models describing drug stimulation or inhibition of the response loss rate with the exception of the presence of a lag time and a dose independent peak time. The current concept can be applied to describe the pharmacodynamic effects of agents affecting survival of hematopoietic cell populations yielding realistic physiological parameters.

摘要

提出了一类基于寿命概念的新型基本间接药效学模型,用于改变天然细胞损失的药物。寿命间接反应(LIDR)模型假定细胞(R)以恒定速率(k(in))产生,在特定持续时间T(R)内存活,最终损失。细胞损失速率等于产生速率,但延迟了T(R)。治疗药物可通过暂时改变属于寿命分布两种模式的细胞比例,将基线细胞寿命增加或减少至新的细胞寿命T(D)。因此,根据具有容量(E(max))和敏感性(EC(50))的希尔函数H(C(t))以及药代动力学函数C(t),描述时间t时寿命的变化。通过模拟研究了单室细胞模型,以描述药物增加(T(D)>T(R))或减少(T(D)<T(R))细胞寿命时药代动力学、药效学和细胞特性的作用。推导了大剂量时效应曲线下面积(AUCE)和LIDR模型的显式解。使用重组人促红细胞生成素(rHuEPO)对网织红细胞的作用进一步说明了该模型的适用性。骨髓祖细胞增殖刺激和网织红细胞寿命增加的情况均用于描述接受20至160 kIU单皮下剂量rHuEPO的健康受试者的平均数据。rHuEPO在增加网织红细胞存活方面的效力比刺激前体产生低约4.5倍。估计平均网织红细胞寿命最大增加4.1天,对寿命分布的效应持续时间与剂量有关。LIDR模型与描述药物刺激或抑制反应损失率的基本间接反应模型具有相似的性质,只是存在滞后时间和剂量无关的峰值时间。当前概念可用于描述影响造血细胞群体存活的药物的药效学效应,得出实际的生理参数。

相似文献

1
Basic pharmacodynamic models for agents that alter the lifespan distribution of natural cells.
J Pharmacokinet Pharmacodyn. 2008 Jun;35(3):349-77. doi: 10.1007/s10928-008-9092-6. Epub 2008 Jun 13.
2
Pharmacodynamic models for agents that alter production of natural cells with various distributions of lifespans.
J Pharmacokinet Pharmacodyn. 2006 Apr;33(2):125-66. doi: 10.1007/s10928-006-9007-3. Epub 2006 Mar 25.
4
Simultaneous pharmacokinetics/pharmacodynamics modeling of recombinant human erythropoietin upon multiple intravenous dosing in rats.
J Pharmacol Exp Ther. 2010 Sep 1;334(3):897-910. doi: 10.1124/jpet.110.167304. Epub 2010 May 25.
5
Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats.
J Pharmacol Exp Ther. 2006 Dec;319(3):1297-306. doi: 10.1124/jpet.106.111377. Epub 2006 Sep 14.
7
Basic pharmacodynamic models for agents that alter production of natural cells.
J Pharmacokinet Biopharm. 1999 Oct;27(5):467-89. doi: 10.1023/a:1023249813106.
9
Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep.
J Pharmacokinet Pharmacodyn. 2008 Jun;35(3):285-323. doi: 10.1007/s10928-008-9089-1. Epub 2008 Jun 14.

引用本文的文献

1
Ordinary differential equation approximation of gamma distributed delay model.
J Pharmacokinet Pharmacodyn. 2019 Feb;46(1):53-63. doi: 10.1007/s10928-018-09618-z. Epub 2019 Jan 7.
2
A distributed delay approach for modeling delayed outcomes in pharmacokinetics and pharmacodynamics studies.
J Pharmacokinet Pharmacodyn. 2018 Apr;45(2):285-308. doi: 10.1007/s10928-018-9570-4. Epub 2018 Jan 24.
3
Models for the red blood cell lifespan.
J Pharmacokinet Pharmacodyn. 2016 Jun;43(3):259-74. doi: 10.1007/s10928-016-9470-4. Epub 2016 Apr 2.
4
Pharmacodynamic models of age-structured cell populations.
J Pharmacokinet Pharmacodyn. 2015 Oct;42(5):573-89. doi: 10.1007/s10928-015-9446-9. Epub 2015 Sep 16.
5
Mathematical model of platelet turnover in thrombocytopenic and nonthrombocytopenic preterm neonates.
Am J Physiol Heart Circ Physiol. 2015 Jan 1;308(1):H68-73. doi: 10.1152/ajpheart.00528.2013. Epub 2014 Oct 31.
6
Lifespan based pharmacokinetic-pharmacodynamic model of tumor growth inhibition by anticancer therapeutics.
PLoS One. 2014 Oct 21;9(10):e109747. doi: 10.1371/journal.pone.0109747. eCollection 2014.
7
Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.
J Pharmacokinet Pharmacodyn. 2014 Aug;41(4):291-318. doi: 10.1007/s10928-014-9368-y. Epub 2014 Aug 21.
8
A semi-mechanistic red blood cell survival model provides some insight into red blood cell destruction mechanisms.
J Pharmacokinet Pharmacodyn. 2013 Aug;40(4):469-78. doi: 10.1007/s10928-013-9322-4. Epub 2013 Jun 18.
9
Lifespan based indirect response models.
J Pharmacokinet Pharmacodyn. 2012 Feb;39(1):109-23. doi: 10.1007/s10928-011-9236-y. Epub 2012 Jan 3.

本文引用的文献

2
Pharmacodynamic analysis of time-variant cellular disposition: reticulocyte disposition changes in phlebotomized sheep.
J Pharmacokinet Pharmacodyn. 2007 Aug;34(4):519-47. doi: 10.1007/s10928-007-9056-2. Epub 2007 May 22.
4
Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects.
Clin Pharmacokinet. 2007;46(2):159-73. doi: 10.2165/00003088-200746020-00004.
5
Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats.
J Pharmacol Exp Ther. 2006 Dec;319(3):1297-306. doi: 10.1124/jpet.106.111377. Epub 2006 Sep 14.
6
Assessment of dosing impact on intra-individual variability in estimation of parameters for basic indirect response models.
J Pharmacokinet Pharmacodyn. 2006 Oct;33(5):635-55. doi: 10.1007/s10928-006-9028-y. Epub 2006 Aug 29.
7
Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects.
J Clin Pharmacol. 2006 Jul;46(7):747-57. doi: 10.1177/0091270006288731.
8
Pharmacodynamic models for agents that alter production of natural cells with various distributions of lifespans.
J Pharmacokinet Pharmacodyn. 2006 Apr;33(2):125-66. doi: 10.1007/s10928-006-9007-3. Epub 2006 Mar 25.
9
Population cell life span models for effects of drugs following indirect mechanisms of action.
J Pharmacokinet Pharmacodyn. 2005 Dec;32(5-6):767-93. doi: 10.1007/s10928-005-0019-1.
10
Pharmacodynamic analysis of changes in reticulocyte subtype distribution in phlebotomy-induced stress erythropoiesis.
J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):359-76. doi: 10.1007/s10928-005-0009-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验