Dirksen Eef H C, Pinkse Martijn W H, Rijkers Dirk T S, Cloos Jacqueline, Liskamp Rob M J, Slijper Monique, Heck Albert J R
Department of Biomolecular Mass Spectrometry, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
J Proteome Res. 2006 Sep;5(9):2380-8. doi: 10.1021/pr060278b.
As a result of the complexity and dynamic range of the cellular proteome, including mutual interactions and interactions with other molecules, focused proteomic approaches are important to study subsets of physiologically important proteins. In one such approach, a small molecule or part of a protein is immobilized on a solid phase and used as bait to fish out interacting proteins from complex mixtures such as cellular lysates. Here, such a chemical proteomics experiment is presented to explore the range of proteins that interact with the N-terminal tail of core histones. Therefore, a core histone consensus N-terminal tail (NTT) peptide was synthesized and immobilized on agarose. Interactions between histone NTTs and proteins are extremely important as they regulate chromatin structure, which is important in many DNA-related processes, like transcription and DNA repair. Induction of DNA damage, like DNA double strand breaks, is known to trigger chromatin remodeling events through interactions between histone NTTs and so-called histone chaperones. Therefore, we set out to investigate specific changes in interactions of nuclear proteins before and shortly after DNA double strand break induction. Over 700 proteins were found to bind specifically to the NTT peptide, which makes our study the most comprehensive proteomic survey of the broad spectrum of nuclear proteins interacting with the NTT of core histones in nucleosomes. Apart from a few exceptions, the abundance of the majority of NTT binding proteins was found to be unchanged following DNA damage. However, an in-depth analysis of protein phosphorylation (we detected more than 90 unique sites in about 60 proteins) revealed that the phosphorylation status of several proteins involved in chromatin remodeling changes upon DNA damage. We observed that in these differentially phosphorylated chaperones are part of closely interacting protein complexes involved in regulatory mechanisms at the crossroads of nucleosome assembly, DNA replication, transcription, and the early onset of DNA damage repair.
由于细胞蛋白质组的复杂性和动态范围,包括相互作用以及与其他分子的相互作用,聚焦蛋白质组学方法对于研究生理上重要的蛋白质亚群至关重要。在一种这样的方法中,一种小分子或蛋白质的一部分被固定在固相上,并用作诱饵从复杂混合物(如细胞裂解物)中钓出相互作用的蛋白质。在此,展示了这样一个化学蛋白质组学实验,以探索与核心组蛋白N端尾巴相互作用的蛋白质范围。因此,合成了一种核心组蛋白共有N端尾巴(NTT)肽并将其固定在琼脂糖上。组蛋白NTT与蛋白质之间的相互作用极其重要,因为它们调节染色质结构,而染色质结构在许多与DNA相关的过程(如转录和DNA修复)中都很重要。已知DNA损伤(如DNA双链断裂)的诱导会通过组蛋白NTT与所谓的组蛋白伴侣之间的相互作用引发染色质重塑事件。因此,我们着手研究DNA双链断裂诱导之前和之后不久核蛋白相互作用的特定变化。发现有700多种蛋白质与NTT肽特异性结合,这使我们的研究成为对与核小体中核心组蛋白NTT相互作用的广谱核蛋白进行的最全面的蛋白质组学调查。除了少数例外,发现大多数NTT结合蛋白的丰度在DNA损伤后没有变化。然而,对蛋白质磷酸化的深入分析(我们在约60种蛋白质中检测到90多个独特位点)表明,几种参与染色质重塑的蛋白质的磷酸化状态在DNA损伤时会发生变化。我们观察到,在这些差异磷酸化的伴侣蛋白中,有一部分是参与核小体组装、DNA复制、转录和DNA损伤修复早期启动等调控机制的紧密相互作用的蛋白质复合物的一部分。