Suppr超能文献

利用53BP1在DNA双链断裂修复中连接松散末端

Tying the loose ends together in DNA double strand break repair with 53BP1.

作者信息

Adams Melissa M, Carpenter Phillip B

机构信息

Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA.

出版信息

Cell Div. 2006 Aug 31;1:19. doi: 10.1186/1747-1028-1-19.

Abstract

To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.

摘要

为维持基因组稳定性并确保染色体传递的准确性,细胞会通过激活DNA损伤反应信号网络来应对各种形式的基因毒性应激,包括DNA双链断裂(DSB)。在应对由电离辐射(IR)、DNA复制过程中或通过淋巴起源的B细胞中的免疫球蛋白重链(IgH)重排所诱导的DSB时,磷脂酰肌醇样激酶(PIK)家族的共济失调毛细血管扩张突变蛋白(ATM)、ATM和Rad3相关激酶(ATR)以及DNA依赖性蛋白激酶(DNA-PK)会激活导致DSB修复的信号通路。DSB可通过两种主要的、并非相互排斥的途径进行修复:利用未受损姐妹染色单体模板(或同源染色体)的同源重组(HR),以及非同源末端连接(NHEJ),后者是一种易出错的机制,通过一小部分普遍存在的因子(DNA-PKcs、Ku70、Ku80、Artemis、Xrcc4/DNA连接酶IV和XLF/Cernunnos)的协同作用来处理和连接断裂的DNA末端。PIK激酶会磷酸化多种效应底物,这些底物会传递DNA损伤信号,最终导致影响细胞周期停滞、转录、DNA修复和细胞凋亡的各种生物学结果。大量数据揭示了p53结合蛋白1(53BP1)在细胞对DSB的反应中所起的关键作用,包括p53功能的各个方面。重要的是,53BP1在抑制易位方面发挥着主要作用,尤其是在B细胞和T细胞中。本报告将回顾过去关于53BP1在DNA损伤反应中作用的实验和当前知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd8b/1601952/7d1732b6fd95/1747-1028-1-19-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验