Luo Qiming, Khoshgoftaar Taghi M
Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.
IEEE Trans Image Process. 2006 Sep;15(9):2755-61. doi: 10.1109/tip.2006.877342.
We present an unsupervised multiscale color image segmentation algorithm. The basic idea is to apply mean shift clustering to obtain an over-segmentation and then merge regions at multiple scales to minimize the minimum description length criterion. The performance on the Berkeley segmentation benchmark campares favorably with some existing approaches.
我们提出了一种无监督多尺度彩色图像分割算法。其基本思想是应用均值漂移聚类来获得过度分割,然后在多个尺度上合并区域,以最小化最小描述长度准则。在伯克利分割基准测试中的性能与一些现有方法相比具有优势。