Unnikrishnan Ranjith, Pantofaru Caroline, Hebert Martial
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):929-44. doi: 10.1109/TPAMI.2007.1046.
Unsupervised image segmentation is an important component in many image understanding algorithms and practical vision systems. However, evaluation of segmentation algorithms thus far has been largely subjective, leaving a system designer to judge the effectiveness of a technique based only on intuition and results in the form of a few example segmented images. This is largely due to image segmentation being an ill-defined problem-there is no unique ground-truth segmentation of an image against which the output of an algorithm may be compared. This paper demonstrates how a recently proposed measure of similarity, the Normalized Probabilistic Rand (NPR) index, can be used to perform a quantitative comparison between image segmentation algorithms using a hand-labeled set of ground-truth segmentations. We show that the measure allows principled comparisons between segmentations created by different algorithms, as well as segmentations on different images. We outline a procedure for algorithm evaluation through an example evaluation of some familiar algorithms-the mean-shift-based algorithm, an efficient graph-based segmentation algorithm, a hybrid algorithm that combines the strengths of both methods, and expectation maximization. Results are presented on the 300 images in the publicly available Berkeley Segmentation Data Set.
无监督图像分割是许多图像理解算法和实际视觉系统中的一个重要组成部分。然而,迄今为止,分割算法的评估在很大程度上是主观的,这使得系统设计者只能基于直觉以及一些示例分割图像的形式来判断一种技术的有效性。这主要是因为图像分割是一个定义不明确的问题——不存在唯一的图像真实分割结果可用于与算法输出进行比较。本文展示了如何使用最近提出的一种相似性度量,即归一化概率兰德(NPR)指数,通过一组手动标注的真实分割结果来对图像分割算法进行定量比较。我们表明,该度量允许对不同算法创建的分割结果以及不同图像上的分割结果进行有原则的比较。我们通过对一些常见算法(基于均值漂移的算法、一种高效的基于图的分割算法、一种结合了两种方法优点的混合算法以及期望最大化算法)的示例评估,概述了一种算法评估程序。结果展示了公开可用的伯克利分割数据集的300幅图像上的情况。