Wikswo J P, Prokop A, Baudenbacher F, Cliffel D, Csukas B, Velkovsky M
Vanderbilt Institute for Integrative Biosystems Research & Education, Nashville, TN 37235, USA.
IEE Proc Nanobiotechnol. 2006 Aug;153(4):81-101. doi: 10.1049/ip-nbt:20050045.
Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.
系统生物学,即定量的、后基因组学的、后蛋白质组学的、动态的、多尺度生理学,以一种综合、定量的方式,利用计算机模型应对遗传和蛋白质组学信息的冲击波,这些模型最终可能有10⁶个具有非线性相互作用的动态变量。从历史上看,单一的生物学测量是在数分钟内进行的,这表明确定10⁶个模型参数具有挑战性。除了荧光和微电极记录外,大多数细胞测量的带宽不足以辨别关键细胞内生化事件的时间进程。数千个基因的微阵列表达谱无法确定定量的动态细胞信号传导和代谢变量。必须弥合计算愿景与实验现实之间的重大差距。细胞信号传导动力学和控制的分析首先需要微米和纳米仪器,这些仪器能够以足够的带宽同时测量多个细胞外和细胞内变量;其次,需要有能力打开现有的内部控制和信号回路;第三,需要外部生物微机电系统微致动器来提供高带宽反馈以及可外部寻址的细胞内纳米致动器;第四,需要实时、闭环、单细胞控制算法。揭示细胞控制回路的嵌套和耦合性质需要同时记录多个单细胞特征。用于改变细胞内外生化、机械和电环境的外部控制纳米致动器将为纳米科学提供主要推动力。