Suppr超能文献

微生理系统在生物学和医学中的相关性及潜在作用。

The relevance and potential roles of microphysiological systems in biology and medicine.

作者信息

Wikswo John P

机构信息

Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA

出版信息

Exp Biol Med (Maywood). 2014 Sep;239(9):1061-72. doi: 10.1177/1535370214542068.

Abstract

Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.

摘要

微生理系统(MPS)由相互作用的器官芯片或使用人类细胞的组织工程三维器官构建体组成,为生物学、医学、药理学、生理学和毒理学带来了新工具。本期《实验生物学与医学》描述了MPS的持续发展,这些MPS可作为骨骼和软骨、大脑、胃肠道、肺、肝脏、微脉管系统、生殖道、骨骼肌和皮肤的体外模型。这里讨论的相关主题包括器官芯片的互连,以支持基于生理学的药代动力学以及药物发现和筛选,以及调节干细胞分化的微尺度技术。创建MPS的最初动机是提高药物开发和测试的速度、效率和安全性,尤其要考虑到永生或原代细胞系的单层单培养以及动物研究都无法充分概括人类体内药物-器官、药物-药物和药物-器官-器官相互作用的动态过程。其他应用包括研究环境毒素对人类的影响、识别、表征和中和化学及生物武器、对无法在人体中进行的微生物组和传染病的对照研究、将诱导多能干细胞可控分化为特定的成体细胞表型,以及研究人体器官内部和之间的代谢和信号传导动态。许多研究人员正在应对技术挑战,在此过程中,很有可能在提供比单层单培养或全动物研究更符合生理现实的替代方案方面取得重大进展。这项工作的成效将部分取决于构建体的使用难易程度、功能表现、对人类药理学和毒理学的概括和报告准确性、能否大量生成以进行平行研究,以及其使用是否能根据监管科学的实践进行标准化。

相似文献

1
The relevance and potential roles of microphysiological systems in biology and medicine.
Exp Biol Med (Maywood). 2014 Sep;239(9):1061-72. doi: 10.1177/1535370214542068.
3
Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component?
Exp Biol Med (Maywood). 2017 Nov;242(17):1714-1731. doi: 10.1177/1535370217732766.
4
Microphysiological Systems: Design, Fabrication, and Applications.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10.
5
Next generation human skin constructs as advanced tools for drug development.
Exp Biol Med (Maywood). 2017 Nov;242(17):1657-1668. doi: 10.1177/1535370217712690. Epub 2017 Jun 7.
6
8
Microphysiological systems to advance human pathophysiology and translational medicine.
J Appl Physiol (1985). 2024 Nov 1;137(5):1494-1501. doi: 10.1152/japplphysiol.00087.2024. Epub 2024 Oct 17.
9
A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening.
Exp Biol Med (Maywood). 2014 Sep;239(9):1240-54. doi: 10.1177/1535370214525295. Epub 2014 Apr 16.

引用本文的文献

2
A 3D SVZonChip Model for In Vitro Mimicry of the Subventricular Zone Neural Stem Cell Niche.
Bioengineering (Basel). 2025 May 23;12(6):562. doi: 10.3390/bioengineering12060562.
5
Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation.
Front Cell Infect Microbiol. 2025 Feb 18;15:1521265. doi: 10.3389/fcimb.2025.1521265. eCollection 2025.
6
Tumor-microenvironment-on-a-chip: the construction and application.
Cell Commun Signal. 2024 Oct 23;22(1):515. doi: 10.1186/s12964-024-01884-4.
7
Interdisciplinary Animal Research Ethics-Challenges, Opportunities, and Perspectives.
Animals (Basel). 2024 Oct 8;14(19):2896. doi: 10.3390/ani14192896.
8
Modeling Tumor Cell Dormancy in an Ex Vivo Liver Metastatic Niche.
Methods Mol Biol. 2024;2811:37-53. doi: 10.1007/978-1-0716-3882-8_3.
9
Organ-on-a-Chip: ? Fundamentals and Design Aspects.
Pharmaceutics. 2024 May 2;16(5):615. doi: 10.3390/pharmaceutics16050615.
10
Dynamic measurement of airway surface liquid volume with an trachea-chip.
Lab Chip. 2024 Jun 11;24(12):3093-3100. doi: 10.1039/d4lc00134f.

本文引用的文献

1
Tissue-engineered microenvironment systems for modeling human vasculature.
Exp Biol Med (Maywood). 2014 Sep;239(9):1264-71. doi: 10.1177/1535370214539228. Epub 2014 Jul 16.
2
Of human-on-a-chip and humans: considerations for creating and using microphysiological systems.
Exp Biol Med (Maywood). 2014 Sep;239(9):1078-9. doi: 10.1177/1535370214537754. Epub 2014 Jul 8.
3
Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases.
Exp Biol Med (Maywood). 2014 Sep;239(9):1080-95. doi: 10.1177/1535370214539232. Epub 2014 Jul 3.
4
Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.
Exp Biol Med (Maywood). 2014 Sep;239(9):1135-69. doi: 10.1177/1535370214536679. Epub 2014 Jun 24.
5
Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue.
Exp Biol Med (Maywood). 2014 Sep;239(9):1073-7. doi: 10.1177/1535370214538916. Epub 2014 Jun 24.
6
Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.
Exp Biol Med (Maywood). 2014 Sep;239(9):1225-39. doi: 10.1177/1535370214529397. Epub 2014 Jun 20.
7
Challenges and promises in modeling dermatologic disorders with bioengineered skin.
Exp Biol Med (Maywood). 2014 Sep;239(9):1215-24. doi: 10.1177/1535370214538747. Epub 2014 Jun 20.
8
Physiology and metabolism of tissue-engineered skeletal muscle.
Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14. doi: 10.1177/1535370214538589. Epub 2014 Jun 9.
9
Biological and medical applications of a brain-on-a-chip.
Exp Biol Med (Maywood). 2014 Sep;239(9):1096-1107. doi: 10.1177/1535370214537738. Epub 2014 Jun 9.
10
A microphysiological system model of therapy for liver micrometastases.
Exp Biol Med (Maywood). 2014 Sep;239(9):1170-9. doi: 10.1177/1535370214532596. Epub 2014 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验