Suppr超能文献

比较用于连续终点基准剂量计算的实验设计。

Comparing experimental designs for benchmark dose calculations for continuous endpoints.

作者信息

Kuljus Kristi, von Rosen Dietrich, Sand Salomon, Victorin Katarina

机构信息

Department of Biometry and Engineering, Swedish University of Agricultural Sciences, PO Box 7032, 750 07 Uppsala, Sweden.

出版信息

Risk Anal. 2006 Aug;26(4):1031-43. doi: 10.1111/j.1539-6924.2006.00798.x.

Abstract

The BMD (benchmark dose) method that is used in risk assessment of chemical compounds was introduced by Crump (1984) and is based on dose-response modeling. To take uncertainty in the data and model fitting into account, the lower confidence bound of the BMD estimate (BMDL) is suggested to be used as a point of departure in health risk assessments. In this article, we study how to design optimum experiments for applying the BMD method for continuous data. We exemplify our approach by considering the class of Hill models. The main aim is to study whether an increased number of dose groups and at the same time a decreased number of animals in each dose group improves conditions for estimating the benchmark dose. Since Hill models are nonlinear, the optimum design depends on the values of the unknown parameters. That is why we consider Bayesian designs and assume that the parameter vector has a prior distribution. A natural design criterion is to minimize the expected variance of the BMD estimator. We present an example where we calculate the value of the design criterion for several designs and try to find out how the number of dose groups, the number of animals in the dose groups, and the choice of doses affects this value for different Hill curves. It follows from our calculations that to avoid the risk of unfavorable dose placements, it is good to use designs with more than four dose groups. We can also conclude that any additional information about the expected dose-response curve, e.g., information obtained from studies made in the past, should be taken into account when planning a study because it can improve the design.

摘要

化学化合物风险评估中使用的基准剂量(BMD)方法由克伦普(1984年)提出,基于剂量反应建模。为了考虑数据和模型拟合中的不确定性,建议将BMD估计值的下限置信区间(BMDL)用作健康风险评估的出发点。在本文中,我们研究如何为连续数据应用BMD方法设计最优实验。我们通过考虑希尔模型类来举例说明我们的方法。主要目的是研究增加剂量组数量并同时减少每个剂量组中的动物数量是否能改善基准剂量估计的条件。由于希尔模型是非线性的,最优设计取决于未知参数的值。这就是为什么我们考虑贝叶斯设计,并假设参数向量具有先验分布。一个自然的设计标准是使BMD估计量的期望方差最小化。我们给出一个例子,在其中我们计算几种设计的设计标准值,并试图找出剂量组数量、剂量组中的动物数量以及剂量选择如何影响不同希尔曲线的这个值。从我们的计算结果可以看出,为避免不利剂量设置的风险,使用超过四个剂量组的设计是好的。我们还可以得出结论,在规划一项研究时,应考虑关于预期剂量反应曲线的任何额外信息,例如从过去的研究中获得的信息,因为它可以改进设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验