Holland-Letz Tim, Kopp-Schneider Annette
Biostatistics Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Arch Toxicol. 2015 Nov;89(11):2059-68. doi: 10.1007/s00204-014-1335-2. Epub 2014 Aug 26.
In most areas of clinical and preclinical research, the required sample size determines the costs and effort for any project, and thus, optimizing sample size is of primary importance. An experimental design of dose-response studies is determined by the number and choice of dose levels as well as the allocation of sample size to each level. The experimental design of toxicological studies tends to be motivated by convention. Statistical optimal design theory, however, allows the setting of experimental conditions (dose levels, measurement times, etc.) in a way which minimizes the number of required measurements and subjects to obtain the desired precision of the results. While the general theory is well established, the mathematical complexity of the problem so far prevents widespread use of these techniques in practical studies. The paper explains the concepts of statistical optimal design theory with a minimum of mathematical terminology and uses these concepts to generate concrete usable D-optimal experimental designs for dose-response studies on the basis of three common dose-response functions in toxicology: log-logistic, log-normal and Weibull functions with four parameters each. The resulting designs usually require control plus only three dose levels and are quite intuitively plausible. The optimal designs are compared to traditional designs such as the typical setup of cytotoxicity studies for 96-well plates. As the optimal design depends on prior estimates of the dose-response function parameters, it is shown what loss of efficiency occurs if the parameters for design determination are misspecified, and how Bayes optimal designs can improve the situation.
在临床和临床前研究的大多数领域,所需样本量决定了任何项目的成本和工作量,因此,优化样本量至关重要。剂量反应研究的实验设计由剂量水平的数量和选择以及每个水平的样本量分配决定。毒理学研究的实验设计往往受传统观念驱动。然而,统计最优设计理论允许以一种方式设置实验条件(剂量水平、测量时间等),从而使获得所需结果精度所需的测量次数和受试者数量最小化。虽然一般理论已经确立,但该问题的数学复杂性迄今为止阻碍了这些技术在实际研究中的广泛应用。本文用最少的数学术语解释了统计最优设计理论的概念,并基于毒理学中三种常见的剂量反应函数:对数逻辑斯蒂函数、对数正态函数和威布尔函数(每种函数有四个参数),利用这些概念生成用于剂量反应研究的具体可用的D最优实验设计。所得设计通常只需要对照组加上三个剂量水平,并且相当直观合理。将最优设计与传统设计进行比较,如96孔板细胞毒性研究的典型设置。由于最优设计取决于剂量反应函数参数的先验估计,文中展示了如果设计确定参数指定错误会出现何种效率损失,以及贝叶斯最优设计如何改善这种情况。