Suppr超能文献

利用人工神经网络对质子磁共振波谱成像进行快速定量分析。

Fast quantification of proton magnetic resonance spectroscopic imaging with artificial neural networks.

作者信息

Bhat Himanshu, Sajja Balasrinivasa Rao, Narayana Ponnada A

机构信息

Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.

出版信息

J Magn Reson. 2006 Nov;183(1):110-22. doi: 10.1016/j.jmr.2006.08.004. Epub 2006 Sep 1.

Abstract

Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times. This is particularly true in dealing with large amount of data that is typically acquired in multi-center clinical studies. To significantly shorten the processing time, an artificial neural network (ANN)-based approach was explored for quantifying the phase corrected (as opposed to magnitude) spectra. Specifically, in these studies radial basis function neural network (RBFNN) was used. This method was tested on simulated and normal human brain data acquired at 3T. The N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate+glutamine (Glx)/Cr, and myo-inositol (mI)/Cr ratios in normal subjects were compared with the line fitting (LF) technique and jMRUI-AMARES analysis, and published values. The average NAA/Cr, Cho/Cr, Glx/Cr and mI/Cr ratios in normal controls were found to be 1.58+/-0.13, 0.9+/-0.08, 0.7+/-0.17 and 0.42+/-0.07, respectively. The corresponding ratios using the LF and jMRUI-AMARES methods were 1.6+/-0.11, 0.95+/-0.08, 0.78+/-0.18, 0.49+/-0.1 and 1.61+/-0.15, 0.78+/-0.07, 0.61+/-0.18, 0.42+/-0.13, respectively. These results agree with those published in literature. Bland-Altman analysis indicated an excellent agreement and minimal bias between the results obtained with RBFNN and other methods. The computational time for the current method was 15s compared to approximately 10 min for the LF-based analysis.

摘要

磁共振波谱成像(MRSI)观察到的代谢物区域分布的准确量化涉及相对较长的处理时间。在处理多中心临床研究中通常获取的大量数据时尤其如此。为了显著缩短处理时间,探索了一种基于人工神经网络(ANN)的方法来量化相位校正(相对于幅度)光谱。具体而言,在这些研究中使用了径向基函数神经网络(RBFNN)。该方法在3T下获取的模拟和正常人类大脑数据上进行了测试。将正常受试者的N-乙酰天门冬氨酸(NAA)/肌酸(Cr)、胆碱(Cho)/Cr、谷氨酸+谷氨酰胺(Glx)/Cr和肌醇(mI)/Cr比值与线性拟合(LF)技术和jMRUI-AMARES分析以及已发表的值进行了比较。正常对照组中NAA/Cr、Cho/Cr、Glx/Cr和mI/Cr的平均比值分别为1.58±0.13、0.9±0.08、0.7±0.17和0.42±0.07。使用LF和jMRUI-AMARES方法的相应比值分别为1.6±0.11、0.95±0.08、0.78±0.18、0.49±0.1和1.61±0.15、0.78±0.07、0.61±0.18、0.42±0.13。这些结果与文献中发表的结果一致。Bland-Altman分析表明,RBFNN与其他方法获得的结果之间具有极好的一致性和最小偏差。当前方法的计算时间为15秒,而基于LF的分析约为10分钟。

相似文献

1
Fast quantification of proton magnetic resonance spectroscopic imaging with artificial neural networks.
J Magn Reson. 2006 Nov;183(1):110-22. doi: 10.1016/j.jmr.2006.08.004. Epub 2006 Sep 1.
3
Quantification of diagnostic biomarkers to detect multiple sclerosis lesions employing (1)H-MRSI at 3T.
Australas Phys Eng Sci Med. 2015 Dec;38(4):611-8. doi: 10.1007/s13246-015-0390-1. Epub 2015 Nov 2.
5
Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging.
Alzheimer Dis Assoc Disord. 2006 Apr-Jun;20(2):77-85. doi: 10.1097/01.wad.0000213809.12553.fc.
7
Longitudinal metabolic and cognitive changes in mild cognitive impairment patients.
Alzheimer Dis Assoc Disord. 2008 Jul-Sep;22(3):269-77. doi: 10.1097/WAD.0b013e3181750a65.
8
Image-fusion of MR spectroscopic images for treatment planning of gliomas.
Med Phys. 2006 Jan;33(1):32-40. doi: 10.1118/1.2128497.

引用本文的文献

1
Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning.
Magn Reson Med. 2023 Apr;89(4):1297-1313. doi: 10.1002/mrm.29526. Epub 2022 Nov 20.
2
Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4309. doi: 10.1002/nbm.4309. Epub 2020 Apr 29.
3
Incorporation of a spectral model in a convolutional neural network for accelerated spectral fitting.
Magn Reson Med. 2019 May;81(5):3346-3357. doi: 10.1002/mrm.27641. Epub 2019 Jan 21.
5
Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance.
J Biomed Biotechnol. 2011;2011:158094. doi: 10.1155/2011/158094. Epub 2010 Sep 15.
6
Spectral resolution amelioration by deconvolution (SPREAD) in MR spectroscopic imaging.
J Magn Reson Imaging. 2009 Jun;29(6):1395-405. doi: 10.1002/jmri.21784.
7
Proton magnetic resonance spectroscopy in multiple sclerosis.
Neuroimaging Clin N Am. 2009 Feb;19(1):45-58. doi: 10.1016/j.nic.2008.08.002.

本文引用的文献

1
Magnetic resonance spectroscopy in the monitoring of multiple sclerosis.
J Neuroimaging. 2005;15(4 Suppl):46S-57S. doi: 10.1177/1051228405284200.
3
Multicentre proton magnetic resonance spectroscopy imaging of primary progressive multiple sclerosis.
Mult Scler. 2004 Jun;10 Suppl 1:S73-8. doi: 10.1191/1352458504ms1035oa.
4
Quantitation of simulated short echo time 1H human brain spectra by LCModel and AMARES.
Magn Reson Med. 2004 May;51(5):904-12. doi: 10.1002/mrm.20063.
5
Proton MR spectroscopic changes in Parkinson's diseases after thalamotomy.
Eur J Radiol. 2003 Sep;47(3):179-87. doi: 10.1016/s0720-048x(02)00211-5.
6
Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9.
Med Phys. 2002 Sep;29(9):2177-97. doi: 10.1118/1.1501822.
8
Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer's disease.
Neuroreport. 2002 Jan 21;13(1):183-6. doi: 10.1097/00001756-200201210-00041.
10
Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging.
Mult Scler. 2001 Aug;7(4):221-6. doi: 10.1177/135245850100700402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验