Suppr超能文献

基于线性切空间对齐的流形学习的磁共振波谱成像的联合谱量化。

Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning.

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2023 Apr;89(4):1297-1313. doi: 10.1002/mrm.29526. Epub 2022 Nov 20.

Abstract

PURPOSE

To develop a manifold learning-based method that leverages the intrinsic low-dimensional structure of MR Spectroscopic Imaging (MRSI) signals for joint spectral quantification.

METHODS

A linear tangent space alignment (LTSA) model was proposed to represent MRSI signals. In the proposed model, the signals of each metabolite were represented using a subspace model and the local coordinates of the subspaces were aligned to the global coordinates of the underlying low-dimensional manifold via linear transform. With the basis functions of the subspaces predetermined via quantum mechanics simulations, the global coordinates and the matrices for the local-to-global coordinate alignment were estimated by fitting the proposed LTSA model to noisy MRSI data with a spatial smoothness constraint on the global coordinates and a sparsity constraint on the matrices.

RESULTS

The performance of the proposed method was validated using numerical simulation data and in vivo proton-MRSI experimental data acquired on healthy volunteers at 3T. The results of the proposed method were compared with the QUEST method and the subspace-based method. In all the compared cases, the proposed method achieved superior performance over the QUEST and the subspace-based methods both qualitatively in terms of noise and artifacts in the estimated metabolite concentration maps, and quantitatively in terms of spectral quantification accuracy measured by normalized root mean square errors.

CONCLUSION

Joint spectral quantification using linear tangent space alignment-based manifold learning improves the accuracy of MRSI spectral quantification.

摘要

目的

开发一种基于流形学习的方法,利用磁共振波谱成像(MRSI)信号的固有低维结构进行联合谱定量。

方法

提出了一种线性切空间对齐(LTSA)模型来表示 MRSI 信号。在提出的模型中,每个代谢物的信号使用子空间模型表示,子空间的局部坐标通过线性变换与底层低维流形的全局坐标对齐。通过量子力学模拟预先确定子空间的基函数,通过对具有全局坐标空间平滑约束和矩阵稀疏约束的噪声 MRSI 数据拟合所提出的 LTSA 模型,来估计全局坐标和局部到全局坐标对齐的矩阵。

结果

使用数值模拟数据和在 3T 下健康志愿者的体内质子-MRSI 实验数据验证了所提出方法的性能。将所提出的方法的结果与 QUEST 方法和基于子空间的方法进行了比较。在所比较的所有情况下,与 QUEST 和基于子空间的方法相比,所提出的方法在估计代谢物浓度图中的噪声和伪影方面的定性表现以及通过归一化均方根误差测量的光谱定量准确性方面都具有更好的性能。

结论

基于线性切空间对齐的流形学习的联合谱定量提高了 MRSI 光谱定量的准确性。

相似文献

1
Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning.
Magn Reson Med. 2023 Apr;89(4):1297-1313. doi: 10.1002/mrm.29526. Epub 2022 Nov 20.
2
Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
Magn Reson Med. 2020 Feb;83(2):377-390. doi: 10.1002/mrm.27980. Epub 2019 Sep 4.
3
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.
4
A Subspace Approach to Spectral Quantification for MR Spectroscopic Imaging.
IEEE Trans Biomed Eng. 2017 Oct;64(10):2486-2489. doi: 10.1109/TBME.2017.2741922. Epub 2017 Aug 18.
5
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.
6
High-resolution H-MRSI of the brain using short-TE SPICE.
Magn Reson Med. 2017 Feb;77(2):467-479. doi: 10.1002/mrm.26130. Epub 2016 Feb 2.
7
SNR Enhancement for Multi-TE MRSI Using Joint Low-Dimensional Model and Spatial Constraints.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3087-3097. doi: 10.1109/TBME.2022.3161417. Epub 2022 Sep 19.
8
Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.
Magn Reson Med. 2016 Feb;75(2):488-97. doi: 10.1002/mrm.25635. Epub 2015 Mar 11.
9
Spectral Quantification for High-Resolution MR Spectroscopic Imaging With Spatiospectral Constraints.
IEEE Trans Biomed Eng. 2017 May;64(5):1178-1186. doi: 10.1109/TBME.2016.2594583. Epub 2016 Jul 27.
10
Mapping of brain macromolecules and their use for spectral processing of (1)H-MRSI data with an ultra-short acquisition delay at 7 T.
Neuroimage. 2015 Nov 1;121:126-35. doi: 10.1016/j.neuroimage.2015.07.042. Epub 2015 Jul 22.

引用本文的文献

1
Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model.
Magn Reson Med. 2025 Feb;93(2):536-549. doi: 10.1002/mrm.30284. Epub 2024 Oct 14.
2
Multi-Parametric Molecular Imaging of the Brain Using Optimized Multi-TE Subspace MRSI.
IEEE Trans Biomed Eng. 2024 Jun;71(6):1732-1744. doi: 10.1109/TBME.2023.3349375. Epub 2024 May 20.
4
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.

本文引用的文献

1
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.
3
High-Resolution Label-Free Molecular Imaging of Brain Tumor.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3049-3052. doi: 10.1109/EMBC46164.2021.9630623.
4
Separation of Metabolites and Macromolecules for Short-TE H-MRSI Using Learned Component-Specific Representations.
IEEE Trans Med Imaging. 2021 Apr;40(4):1157-1167. doi: 10.1109/TMI.2020.3048933. Epub 2021 Apr 1.
5
Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy.
Brain. 2020 Dec 5;143(11):3225-3233. doi: 10.1093/brain/awaa264.
6
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
7
Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4309. doi: 10.1002/nbm.4309. Epub 2020 Apr 29.
9
Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.
IEEE Trans Med Imaging. 2020 Mar;39(3):688-702. doi: 10.1109/TMI.2019.2934125. Epub 2019 Aug 9.
10
Constrained Magnetic Resonance Spectroscopic Imaging by Learning Nonlinear Low-Dimensional Models.
IEEE Trans Med Imaging. 2020 Mar;39(3):545-555. doi: 10.1109/TMI.2019.2930586. Epub 2019 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验