Bhattacharya Indranil, Raybon Joseph J, Boje Kathleen M K
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, H517 Cooke-Hochstetter, Buffalo, NY 14260, USA.
Pharm Res. 2006 Sep;23(9):2067-77. doi: 10.1007/s11095-006-9066-6. Epub 2006 Aug 10.
To investigate if gamma-Hydroxybutyrate (GHB) tolerance is mediated by alterations in GHB systemic pharmacokinetics, transport (blood brain barrier (BBB) and neuronal) or membrane fluidity.
GHB tolerance in rats was attained by repeated GHB administration (5.31 mmol/kg, s.c., QD for 5 days). GHB sedative/hypnotic effects were measured daily. GHB pharmacokinetics were determined on day 5. In separate groups, on day 6, in situ brain perfusion was performed to assess BBB transport alterations; or in vitro studies were performed (fluorescence polarization measurements of neuronal membrane fluidity or [3H]GABA neuronal accumulation).
GHB sedative/hypnotic tolerance was observed by day 5. No significant GHB pharmacokinetic or BBB transport differences were observed between treated and control rats. Neuronal membrane preparations from GHB tolerant rats showed a significant decrease in fluorescence polarization (treated-0.320 +/- 0.009, n = 5; control-0.299 +/- 0.009, n = 5; p < 0.05). [3H]GABA neuronal transport Vmax was significantly increased in tolerant rats (2,110.66 +/- 91.06 pmol/mg protein/min vs control (1,612.68 +/- 176.03 pmol/mg protein/min; n = 7 p < 0.05).
Short term GHB administration at moderate doses results in the development of tolerance which is not due to altered systemic pharmacokinetics or altered BBB transport, but might be due to enhanced membrane rigidity and increased GABA reuptake.
研究γ-羟基丁酸(GHB)耐受性是否由GHB全身药代动力学、转运(血脑屏障(BBB)和神经元)或膜流动性的改变介导。
通过重复给予GHB(5.31 mmol/kg,皮下注射,每日一次,共5天)使大鼠产生GHB耐受性。每日测量GHB的镇静/催眠作用。在第5天测定GHB药代动力学。在单独的组中,第6天进行原位脑灌注以评估BBB转运改变;或进行体外研究(神经元膜流动性的荧光偏振测量或[3H]GABA神经元摄取)。
第5天观察到GHB镇静/催眠耐受性。在处理组和对照组大鼠之间未观察到显著的GHB药代动力学或BBB转运差异。来自GHB耐受大鼠的神经元膜制剂显示荧光偏振显著降低(处理组-0.320±0.009,n = 5;对照组-0.299±0.009,n = 5;p < 0.05)。耐受大鼠中[3H]GABA神经元转运Vmax显著增加(2,110.66±91.06 pmol/mg蛋白/分钟 vs 对照组(1,612.68±176.03 pmol/mg蛋白/分钟;n = 7,p < 0.05)。
中等剂量短期给予GHB会导致耐受性的产生,这不是由于全身药代动力学改变或BBB转运改变,而是可能由于膜刚性增强和GABA再摄取增加。