Stein Daniel B, Linne Uwe, Hahn Martin, Marahiel Mohamed A
Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Chembiochem. 2006 Nov;7(11):1807-14. doi: 10.1002/cbic.200600192.
Assembly of bioactive natural compounds through the action of nonribosomal peptide synthetases (NRPSs) relies on the specific interplay of modules and domains along these multiple mega-enzymes. As the C termini of several bacterial NRPSs often harbor epimerization (E) domains that generate D-amino acids, these seem to facilitate the ordered intermolecular enzymatic interaction and the directed transfer of intermediates. To elucidate this bifunctional role, E domains in recombinant bimodular proteins derived from the tyrocidine synthetase B were investigated. By utilizing sequent tryptic proteolysis and HPLC Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), we could directly interrogate and determine the formation of intermediates attached to the TycB(3)-PCP domain of wild-type TycB(2-3) and to the E domain exchange enzyme TycB(2-3)-ATCAT/E(tycA). In addition, the two proteins and a version of TycB(2-3) fused to the communication-mediating (COM) domain of TycA were applied in product formation assays with TycB(1) to corroborate E domain impact on intermodular NRPS interaction. Significant functional differences between the C-terminal aminoacyl- and peptidyl-E domains were observed in terms of in trans interaction and misinitiation. E domains originating from elongation modules (peptidyl-E domains) seem to be optimized for regulation of the progression of peptide bond formation, epimerization, and intermediate transfer to the downstream module, whereas E domains of initiation modules (aminoacyl-E domains) impair upstream condensation and cause misinitiation. The selection of E domains is therefore decisive for successful application in biocombinatorial engineering of nonribosomal peptides.
通过非核糖体肽合成酶(NRPSs)的作用组装生物活性天然化合物依赖于这些多聚体大酶上模块和结构域之间的特定相互作用。由于几种细菌NRPSs的C末端通常含有产生D-氨基酸的差向异构化(E)结构域,这些结构域似乎有助于有序的分子间酶促相互作用和中间体的定向转移。为了阐明这种双功能作用,对源自短杆菌酪肽合成酶B的重组双模块蛋白中的E结构域进行了研究。通过连续的胰蛋白酶解和高效液相色谱-傅里叶变换离子回旋共振质谱(FTICR-MS),我们可以直接探究并确定与野生型TycB(2-3)的TycB(3)-PCP结构域以及E结构域交换酶TycB(2-3)-ATCAT/E(tycA)相连的中间体的形成。此外,将这两种蛋白以及与TycA的通讯介导(COM)结构域融合的TycB(2-3)版本应用于与TycB(1)的产物形成试验,以证实E结构域对模块间NRPS相互作用的影响。在反式相互作用和错误起始方面观察到C末端氨酰基-E结构域和肽基-E结构域之间存在显著的功能差异。源自延伸模块的E结构域(肽基-E结构域)似乎在调节肽键形成、差向异构化以及中间体向下游模块的转移过程方面得到了优化,而起始模块的E结构域(氨酰基-E结构域)则会损害上游缩合反应并导致错误起始。因此,E结构域的选择对于非核糖体肽生物组合工程的成功应用至关重要。