Clugston Susan L, Sieber Stephan A, Marahiel Mohamed A, Walsh Christopher T
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
Biochemistry. 2003 Oct 21;42(41):12095-104. doi: 10.1021/bi035090+.
Nonribosomal peptides (NRP) such as the antibiotic tyrocidine have D-amino acids, introduced by epimerase (E) domains embedded within modules of the enzymatic assembly lines. We predict that the peptide bond-forming condensation (C) domains immediately downstream of E domains are D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)). To validate this prediction and establish that the C(5) domain of tyrocidine synthetase is indeed (D)C(L), the apoT (thiolation) forms of module 4 (TycB(3) AT(4)E) and module 5 (TycC(1) C(5)AT(5)) were expressed. T(5) was posttranslationally primed with CoASH to introduce the HS-pantetheinyl group and autoaminoacylated with radiolabeled L-Asn* or L-Asp*. Alternate donor substrates were introduced by priming apo AT(4)E with synthetically prepared tetrapeptidyl-CoA's differing in the chirality of Phe-4, D-Phe-L-Pro-L-Phe-L-Phe-CoA, and D-Phe-L-Pro-L-Phe-D-Phe-CoA. The tetrapeptidyl-S-T(4) and L-Asp-S-T(5) were studied for peptide bond formation and chain translocation by C(5) to yield pentapeptidyl-S-T(5), whose chirality (D-L-L-D-L- vs D-L-L-L-L-) was assayed by thioester cleavage and chiral chromatography of the released pentapeptides. Only the D-Phe-4 pentapeptidyl-S-T(5) was generated, implying that only D-L-L-D-S-T(4) was utilized, proving C(5) is indeed a (D)C(L) catalyst. Furthermore, a mutant with an inactive E domain transferred tetrapeptide only when loaded with D-Phe-4 tetrapeptidyl donor, not L-Phe-4, confirming that in the wild-type assembly line C(5) only transfers D-L-L-L-tetrapeptidyl-S-T(4) after in situ epimerization by the E domain. These results contrast the observation that C(5) can make both L-Phe-L-Asn and D-Phe-L-Asn when assayed with Phe as the donor substrate. Hence, utilizing an aminoacyl-S-T(4) versus the natural peptidyl-S-T(4) donor produced misleading information regarding the specificity of the condensation domain.
非核糖体肽(NRP),如抗生素短杆菌酪肽,含有D-氨基酸,这些D-氨基酸由嵌入酶促装配线模块中的差向异构酶(E)结构域引入。我们预测,E结构域下游紧邻的肽键形成缩合(C)结构域对肽基供体具有D特异性,对氨酰基受体具有L特异性((D)C(L))。为了验证这一预测并确定短杆菌酪肽合成酶的C(5)结构域确实是(D)C(L),我们表达了模块4(TycB(3)AT(4)E)和模块5(TycC(1)C(5)AT(5))的载脂蛋白T(硫醇化)形式。T(5)在翻译后用辅酶A进行预处理以引入HS-泛酰巯基乙胺基团,并用放射性标记的L-Asn或L-Asp进行自身氨酰化。通过用合成制备的在苯丙氨酸-4的手性上不同的四肽基-CoA(D-苯丙氨酸-L-脯氨酸-L-苯丙氨酸-L-苯丙氨酸-CoA和D-苯丙氨酸-L-脯氨酸-L-苯丙氨酸-D-苯丙氨酸-CoA)对载脂蛋白AT(4)E进行预处理来引入替代供体底物。研究了四肽基-S-T(4)和L-天冬氨酸-S-T(5)通过C(5)进行肽键形成和链转移以产生五肽基-S-T(5)的情况,通过硫酯裂解和释放的五肽的手性色谱分析其手性(D-L-L-D-L-与D-L-L-L-L-)。只生成了D-苯丙氨酸-4五肽基-S-T(5),这意味着只利用了D-L-L-D-S-T(4),证明C(5)确实是一种(D)C(L)催化剂。此外,一个具有无活性E结构域的突变体仅在加载D-苯丙氨酸-4四肽基供体时转移四肽,而不是L-苯丙氨酸-4,这证实了在野生型装配线中,C(5)仅在被E结构域原位差向异构化后转移D-L-L-L-四肽基-S-T(4)。这些结果与以下观察结果形成对比:当以苯丙氨酸作为供体底物进行检测时,C(5)既能生成L-苯丙氨酸-L-天冬酰胺,也能生成D-苯丙氨酸-L-天冬酰胺。因此,使用氨酰基-S-T(4)而不是天然的肽基-S-T(4)供体产生了关于缩合结构域特异性的误导性信息。