Brudler Ronald, Gessner Chris R, Li Sheng, Tyndall Sammy, Getzoff Elizabeth D, Woods Virgil L
Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
J Mol Biol. 2006 Oct 13;363(1):148-60. doi: 10.1016/j.jmb.2006.07.078. Epub 2006 Aug 1.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.
光活性黄色蛋白(PYP)是一种小型细菌光感受器,经历光激活反应循环。PYP也是典型的Per-Arnt-Sim(PAS)结构域。PAS结构域存在于从细菌到人类的多种多结构域蛋白中,介导蛋白质-蛋白质相互作用,并作为传感器和信号转导器发挥作用。在这里,我们利用增强型氢/氘交换质谱(DXMS)研究了野生型PYP在形成长寿命假定信号中间体I2时溶液中的构象和动态变化。DXMS结果表明,中央β-折叠保持稳定,但特定的外部蛋白质片段变得强烈去保护。I2中暗态氢键网络的光诱导破坏导致PAS核心螺旋α3和α4的柔韧性增加和打开,释放β4-β5发夹,并将构象变化传播到中央β-折叠。令人惊讶的是,对于从I2快速恢复暗态至关重要的最初大约10个N端残基变得更受保护。通过将DXMS结果与我们的晶体结构相结合,晶体结构揭示了发色团附近的详细变化但蛋白质构象变化有限,我们提出了I2状态形成的机制。该机制整合了来自PYP各种生物物理研究的结果,并将变构T态到R态的构象转变与PYP折叠内信号传播的三条途径联系起来。基于在PYP中观察到的变化以及PAS结构域蛋白之间的共性,我们进一步提出PAS结构域共享这种构象机制,这通过框架编码的变构解释了结构保守的PYP/PAS模块的通用信号转导特性。