Suppr超能文献

先进蛋白质组学技术在癌症诊断中的贡献。

Contributions of advanced proteomics technologies to cancer diagnosis.

作者信息

Ciordia Sergio, de Los Ríos Vivian, Albar Juan-Pablo

机构信息

Proteomics Facility, Centro Nacional de Biotecnología-CSIC, Universidad Autónoma, Madrid, Spain.

出版信息

Clin Transl Oncol. 2006 Aug;8(8):566-80. doi: 10.1007/s12094-006-0062-4.

Abstract

The ability of Medicine to effectively treat and cure cancer is directly dependent on their capability to detect cancers at their earliest stages. The advent of proteomics has brought with it the hope of discovering novel biomarkers in the early phases of tumorigenesis that can be used to diagnose diseases, predict susceptibility, and monitor progression. This discipline incorporates technologies that can be applied to complex biosystems such as serum and tissue in order to characterize the content of, and changes in, the proteome induced by physiological changes, benign or pathologic. These tools include 2-DE, 2D-DIGE, ICAT, protein arrays, MudPIT and mass spectrometries including SELDI-TOF. The application of these tools has assisted to uncover molecular mechanisms associated with cancer at the global level and may lead to new diagnostic tests and improvements in therapeutics. In this review these approaches are evaluated in the context of their contribution to cancer biomarker discovery. Particular attention is paid to the promising contribution of the ProteinChip/SELDI-TOF platform as a revolutionary approach in proteomic patterns analysis that can be applied at the bedside for discovering protein profiles that distinguish disease and disease-free states with high sensitivity and specificity. Understanding the basic concepts and tools used will illustrate how best to apply these technologies for patient benefit for the early cancer detection and improved patient care.

摘要

医学有效治疗和治愈癌症的能力直接取决于其在癌症最早期阶段进行检测的能力。蛋白质组学的出现带来了在肿瘤发生早期发现新型生物标志物的希望,这些生物标志物可用于疾病诊断、预测易感性和监测病情进展。该学科整合了可应用于血清和组织等复杂生物系统的技术,以表征由生理变化(良性或病理性)诱导的蛋白质组的成分及其变化。这些工具包括二维电泳(2-DE)、差异凝胶电泳(2D-DIGE)、同位素标记亲和标签(ICAT)、蛋白质阵列、多维蛋白质鉴定技术(MudPIT)以及包括表面增强激光解吸电离飞行时间质谱(SELDI-TOF)在内的质谱技术。这些工具的应用有助于在全球范围内揭示与癌症相关的分子机制,并可能带来新的诊断测试方法和治疗手段的改进。在本综述中,将根据这些方法对癌症生物标志物发现的贡献来对其进行评估。特别关注蛋白质芯片/表面增强激光解吸电离飞行时间质谱平台作为蛋白质组模式分析中的一种革命性方法所做出的有前景的贡献,该平台可在床边应用,以发现能够以高灵敏度和特异性区分疾病状态和无疾病状态的蛋白质谱。了解所使用的基本概念和工具将说明如何最好地应用这些技术,以使患者受益于早期癌症检测并改善患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验