Li J F, Fan J, Zhang H D, Qiu F, Tang P, Yang Y L
The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education of China, 200433, Shanghai, PRC.
Eur Phys J E Soft Matter. 2006 Aug;20(4):449-57. doi: 10.1140/epje/i2006-10035-y. Epub 2006 Sep 5.
The spherical surface is spatially discretized with triangular lattices to numerically calculate the Laplace-Beltrami operator contained in the self-consistent field theory (SCFT) equations using a finite volume method. Based on this method we have developed a spherical alternating-direction implicit (ADI) scheme for the first time to help extend real-space implementation of SCFT in 2D flat space to the surface of the sphere. By using this method, we simulate the equilibrium microphase separation morphology of block copolymers including AB diblocks, ABC linear triblocks and ABC star triblock copolymers occurred on the spherical surface. In general, two classes of microphase separation morphologies such as striped patterns for compositionally symmetric block copolymers and spotted patterns for asymmetric compositions have been found. In contrast to microphase separation morphology in 2D flat space, the geometrical characteristics of a sphere has a large influence on the self-assembled morphology. For striped patterns, several of spiral-form and ring-form patterns are found by changing the ratio of the radius of a sphere to the averaging width of the stripes. The specific pattern such as the striped and spotted pattern with intrinsic dislocations or defects stems from formed periodic patterns due to microphase separation of block copolymers arranged on the curved surface.
利用有限体积法,通过三角形晶格对球面进行空间离散化,以数值计算自洽场理论(SCFT)方程中包含的拉普拉斯 - 贝尔特拉米算子。基于此方法,我们首次开发了一种球面交替方向隐式(ADI)格式,以帮助将二维平面空间中SCFT的实空间实现扩展到球面。通过使用该方法,我们模拟了在球面上发生的嵌段共聚物(包括AB二嵌段、ABC线性三嵌段和ABC星形三嵌段共聚物)的平衡微相分离形态。一般来说,已发现两类微相分离形态,如组成对称嵌段共聚物的条纹图案和不对称组成的斑点图案。与二维平面空间中的微相分离形态相比,球体的几何特征对自组装形态有很大影响。对于条纹图案,通过改变球体半径与条纹平均宽度的比例,发现了几种螺旋形和环形图案。具有固有位错或缺陷的条纹和斑点图案等特定图案源于排列在曲面上的嵌段共聚物微相分离形成的周期性图案。