Baffert Carole, Boas John F, Bond Alan M, Kögerler Paul, Long De-Liang, Pilbrow John R, Cronin Leroy
School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Chemistry. 2006 Nov 15;12(33):8472-83. doi: 10.1002/chem.200501450.
The synthesis, isolation and structural characterization of the sulfite polyoxomolybdate clusters alpha-(D(3h))(C(20)H(44)N)(4){alpha-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN and beta-(D(3d))(C(20)H(44)N)(4){beta-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN is presented. Voltammetric studies in acetonitrile (0.1 M Hx(4)NClO(4), Hx(4)N=tetra-n-hexylammonium) reveal the presence of an extensive series of six one-electron reduction processes for both isomers. Under conditions of bulk electrolysis, the initial Mo(18)O(54)(SO(3))(2) and Mo(18)O(54)(SO(3))(2) processes produce stable Mo(18)O(54)(SO(3))(2) and Mo(18)O(54)(SO(3))(2) species, respectively, and the same reduced species may be produced by photochemical reduction. Spectroelectrochemical data imply that retention of structural form results upon reduction, so that both alpha and beta isomers are available at each of the 4-, 5-, and 6-redox levels. However, the alpha isomer is the thermodynamically favored species in both the one- and two-electron-reduced states, with beta-->alpha isomerization being detected in both cases on long time scales (days). EPR spectra also imply that increasing localization of the unpaired electron occurs over the alpha- and beta-Mo(18)O(54)(SO(3))(2) frameworks as the temperature approaches 2 K where the EPR spectra show orthorhombic symmetry with different g and hyperfine values for the alpha and beta isomers. Theoretical studies support the observation that it is easier to reduce the alpha cluster than the beta form and also provide insight into the driving force for beta-->alpha isomerization in the reduced state. Data are compared with that obtained for the well studied alpha-Mo(18)O(54)(SO(4))(2)) sulfate cluster.
本文介绍了亚硫酸根多氧钼酸盐簇合物α-(D(3h))(C(20)H(44)N)(4){α-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN和β-(D(3d))(C(20)H(44)N)(4){β-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN的合成、分离及结构表征。在乙腈(0.1 M Hx(4)NClO(4),Hx(4)N = 四正己基铵)中的伏安研究表明,两种异构体均存在一系列广泛的六个单电子还原过程。在本体电解条件下,初始的Mo(18)O(54)(SO(3))(2)和Mo(18)O(54)(SO(3))(2)过程分别产生稳定的Mo(18)O(54)(SO(3))(2)和Mo(18)O(54)(SO(3))(2)物种,并且相同的还原物种也可通过光化学还原产生。光谱电化学数据表明,还原后结构形式得以保留,因此在4-、5-和6-氧化还原水平下,α和β异构体均可获得。然而,α异构体在单电子和双电子还原态中均为热力学上更有利的物种,在两种情况下长时间尺度(数天)均检测到β→α异构化。电子顺磁共振光谱还表明,随着温度接近2 K,未成对电子在α-和β-Mo(18)O(54)(SO(3))(2)框架上的局域化增加,此时电子顺磁共振光谱显示正交对称性,α和β异构体具有不同的g值和超精细值。理论研究支持了α簇合物比β形式更容易还原的观察结果,并深入了解了还原态下β→α异构化的驱动力。将数据与对已充分研究的α-Mo(18)O(54)(SO(4))(2))硫酸根簇合物所获得的数据进行了比较。