Schön Arne, Madani Navid, Klein Jeffrey C, Hubicki Amy, Ng Danny, Yang Xinzhen, Smith Amos B, Sodroski Joseph, Freire Ernesto
Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
Biochemistry. 2006 Sep 12;45(36):10973-80. doi: 10.1021/bi061193r.
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.
NBD - 556以及化学和结构上与之相似的NBD - 557是两种低分子量化合物,据报道它们能阻断HIV - 1包膜糖蛋白gp120与其受体CD4之间的相互作用。NBD - 556以2.7×10⁵ M⁻¹的结合亲和力(K(d)=3.7 μM)与gp120结合,该过程的特征是焓有很大的有利变化,部分被很大的不利熵变所补偿,这是一种与sCD4与gp120结合时观察到的类似的热力学特征。NBD - 556的结合与gp120分子的大量结构形成有关,这也通过圆二色光谱法得到了证实。与CD4一样,NBD - 556能激活gp120与HIV - 1共受体CCR5以及与识别gp120共受体结合位点的17b单克隆抗体的结合。NBD - 556能刺激CD4阴性、表达CCR5的细胞被HIV - 1感染。NBD - 556与gp120结合的热力学特征与另一种病毒进入抑制剂BMS - 378806非常不同。NBD - 556以很大的有利焓和补偿不利熵变与gp120结合,而BMS - 378806在主要由熵驱动的过程中结合焓变化很小。NBD - 556是sCD4的竞争性抑制剂,并引发共受体结合位点的类似结构形成,而BMS - 378806不与sCD4竞争,也不诱导共受体结合。这些研究表明,低分子量化合物可以诱导HIV - 1 gp120糖蛋白发生与CD4结合时观察到的类似构象变化,揭示了抑制HIV - 1 gp120包膜糖蛋白功能的不同策略。此外,竞争性和非竞争性化合物具有特征性的热力学特征,可用于指导设计更有效和更高效的病毒进入抑制剂。