Suppr超能文献

Distill:一套用于预测蛋白质一维、二维和三维结构特征的网络服务器。

Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins.

作者信息

Baú Davide, Martin Alberto J M, Mooney Catherine, Vullo Alessandro, Walsh Ian, Pollastri Gianluca

机构信息

School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

BMC Bioinformatics. 2006 Sep 5;7:402. doi: 10.1186/1471-2105-7-402.

Abstract

BACKGROUND

We describe Distill, a suite of servers for the prediction of protein structural features: secondary structure; relative solvent accessibility; contact density; backbone structural motifs; residue contact maps at 6, 8 and 12 Angstrom; coarse protein topology. The servers are based on large-scale ensembles of recursive neural networks and trained on large, up-to-date, non-redundant subsets of the Protein Data Bank. Together with structural feature predictions, Distill includes a server for prediction of Calpha traces for short proteins (up to 200 amino acids).

RESULTS

The servers are state-of-the-art, with secondary structure predicted correctly for nearly 80% of residues (currently the top performance on EVA), 2-class solvent accessibility nearly 80% correct, and contact maps exceeding 50% precision on the top non-diagonal contacts. A preliminary implementation of the predictor of protein Calpha traces featured among the top 20 Novel Fold predictors at the last CASP6 experiment as group Distill (ID 0348). The majority of the servers, including the Calpha trace predictor, now take into account homology information from the PDB, when available, resulting in greatly improved reliability.

CONCLUSION

All predictions are freely available through a simple joint web interface and the results are returned by email. In a single submission the user can send protein sequences for a total of up to 32k residues to all or a selection of the servers. Distill is accessible at the address: http://distill.ucd.ie/distill/.

摘要

背景

我们描述了Distill,这是一套用于预测蛋白质结构特征的服务器:二级结构;相对溶剂可及性;接触密度;主链结构基序;6、8和12埃的残基接触图;粗粒度蛋白质拓扑结构。这些服务器基于递归神经网络的大规模集合,并在蛋白质数据库的大型、最新、非冗余子集中进行训练。除了结构特征预测外,Distill还包括一个用于预测短蛋白质(最多200个氨基酸)的Cα迹线的服务器。

结果

这些服务器是最先进的,二级结构预测的残基正确率接近80%(目前在EVA上表现最佳),两类溶剂可及性正确率接近80%,接触图在顶部非对角接触上的精度超过50%。在最近的CASP6实验中,作为Distill小组(ID 0348),蛋白质Cα迹线预测器的初步实现位列前20名新型折叠预测器之中。现在,大多数服务器,包括Cα迹线预测器,在有可用信息时会考虑来自蛋白质数据库的同源性信息,从而大大提高了可靠性。

结论

所有预测都可通过一个简单的联合网络界面免费获取,结果将通过电子邮件返回。用户可以在一次提交中向所有或部分服务器发送总共最多32k个残基的蛋白质序列。可通过以下地址访问Distill:http://distill.ucd.ie/distill/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/213a/1574355/41444242cc2a/1471-2105-7-402-2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验