Suppr超能文献

基于容积计算机断层扫描的体脂分布自动定量分析

Automated quantification of body fat distribution on volumetric computed tomography.

作者信息

Zhao Binsheng, Colville Jane, Kalaigian John, Curran Sean, Jiang Li, Kijewski Peter, Schwartz Lawrence H

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.

出版信息

J Comput Assist Tomogr. 2006 Sep-Oct;30(5):777-83. doi: 10.1097/01.rct.0000228164.08968.e8.

Abstract

OBJECTIVE

To develop a computerized method to automatically quantify visceral and subcutaneous fat distribution within the abdomen and pelvis on volumetric computed tomographic (CT) images.

METHODS

Given the slices of interest, the algorithm automatically delineates a contour that separates the visceral fat from the subcutaneous fat on each slice. Explicitly, starting with extraction of the body perimeter, radii at a fixed angle increment are drawn from the perimeter to the center of the body. Along each radius, intensity profile is analyzed to determine the point on the subcutaneous fat layer that is closest to the body center (inner point). All inner points are then connected to form an inner contour, and a specific smoothing algorithm is subsequently applied to correct suboptimal results. Pixels having HU values between -190 and -30 are considered fat pixels. This procedure is repeated on each of the slices of interest. The visceral and subcutaneous fat volumes computed automatically were compared with those after the radiologist's adjustments. Ratios of volumetric visceral fat-to-total fat and visceral fat-to-subcutaneous fat were compared on average and with single-slice measurements obtained at L4 and L5 vertebral body levels.

RESULTS

Subcutaneous and visceral fat were automatically segmented using this algorithm on 419 axial CT slices in 9 CT scans (patients) within the abdomen and pelvis. The overall average percentage difference between the automated segmentation and the segmentation edited by the radiologist were 1.54% for the visceral fat and 0.65% for the subcutaneous fat.

CONCLUSIONS

Preliminary results have shown that total compartmental fat, including visceral and subcutaneous fat, can be automatically and accurately segmented on volumetric CT.

摘要

目的

开发一种计算机化方法,以在容积计算机断层扫描(CT)图像上自动量化腹部和骨盆内的内脏脂肪和皮下脂肪分布。

方法

给定感兴趣的切片,该算法会自动勾勒出一条轮廓,在每个切片上将内脏脂肪与皮下脂肪分开。具体而言,从提取身体周长开始,以固定的角度增量从周长向身体中心绘制半径。沿着每个半径,分析强度轮廓以确定皮下脂肪层上最接近身体中心的点(内点)。然后将所有内点连接起来形成一个内部轮廓,随后应用特定的平滑算法来校正次优结果。HU值在-190至-30之间的像素被视为脂肪像素。在每个感兴趣的切片上重复此过程。将自动计算的内脏脂肪和皮下脂肪体积与放射科医生调整后的体积进行比较。比较内脏脂肪与总脂肪的体积比以及内脏脂肪与皮下脂肪的体积比的平均值,并与在L4和L5椎体水平获得的单切片测量值进行比较。

结果

使用该算法在9次CT扫描(患者)的腹部和骨盆内的419个轴向CT切片上自动分割皮下脂肪和内脏脂肪。自动分割与放射科医生编辑的分割之间的总体平均百分比差异在内脏脂肪方面为1.54%,在皮下脂肪方面为0.65%。

结论

初步结果表明,包括内脏脂肪和皮下脂肪在内的总隔室脂肪可以在容积CT上自动且准确地分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验