Feliciello Isidoro, Picariello Orfeo, Chinali Gianni
Dipartimento di Medicina Clinica e Sperimentale, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy.
Gene. 2006 Nov 15;383:81-92. doi: 10.1016/j.gene.2006.07.016. Epub 2006 Jul 28.
We have characterized the S1 satellite from eight European populations of Rana dalmatina by Southern blot, cloning and a new method that determines the sequence variability of repetitive units in the genome. This report completes our previous studies on this satellite DNA family, thus providing the first characterization of the overall variability of the structure and genomic organization of a satellite DNA within a species and among related species. The S1 satellite from R. dalmatina has a pericentromeric location on ten chromosome pairs and presents two homologous repeats S1a (494 bp) and S1b (332 bp), mostly organized as composite S1a-S1b repetitive units. In other brown frog species, both repeats have different sequences and locations, and are usually organized as separate arrays, although composite S1a-S1b repeats represent a minor, widely variable component in Rana italica. The average genomic sequences indicate that the species contains an enormous number of variants of each repeat derived from a unique, species-specific common sequence. The repeat variability is restricted to specific base changes in specific sequence positions in all population samples. Our data show that the structure and evolution of S1 satellite family is not due to crossing-over and gene conversion, but to a mechanism that maintains the ability of the satellite DNA to assemble in constitutive heterochromatin by replacing altered satellite segments with new arrays generated by rolling circle amplification. The mode of action of this repair process not only directly explains the intra- and inter-specific variability of the structure and organization of the S1 satellite repeats from European brown frogs, but also accounts for all general features of satellite DNA in eukaryotes, including its discontinuous evolution. This repair mechanism can maintain the satellite structure in a species indefinitely, but also promote a rapid generation of new variants or types of satellite DNA when environmental conditions favor the formation of new species.
我们通过Southern印迹法、克隆以及一种确定基因组中重复单元序列变异性的新方法,对来自欧洲八个种群的黑斑侧褶蛙的S1卫星进行了特征分析。本报告完善了我们此前对这个卫星DNA家族的研究,从而首次对一个物种内以及相关物种间卫星DNA的结构和基因组组织的整体变异性进行了特征描述。黑斑侧褶蛙的S1卫星在十对染色体上位于着丝粒周围区域,呈现出两个同源重复序列S1a(494 bp)和S1b(332 bp),大多组织成复合的S1a - S1b重复单元。在其他棕蛙物种中,这两个重复序列具有不同的序列和位置,并且通常组织成单独的阵列,尽管复合的S1a - S1b重复序列在意大利林蛙中是一个次要的、广泛可变的成分。平均基因组序列表明,该物种包含从一个独特的、物种特异性的共同序列衍生而来的每个重复序列的大量变体。在所有种群样本中,重复序列的变异性仅限于特定序列位置的特定碱基变化。我们的数据表明,S1卫星家族的结构和进化并非由于交叉和基因转换,而是由于一种机制,该机制通过用滚环扩增产生的新阵列取代改变的卫星片段来维持卫星DNA在组成型异染色质中组装的能力。这种修复过程的作用方式不仅直接解释了欧洲棕蛙S1卫星重复序列的结构和组织在种内和种间的变异性,还解释了真核生物中卫星DNA的所有一般特征,包括其不连续进化。这种修复机制可以在一个物种中无限期地维持卫星结构,但在环境条件有利于新物种形成时,也能促进新变体或卫星DNA类型的快速产生。