Suppr超能文献

模式精度分析表明,果蝇的体节形成在很大程度上独立于母体基因产物的梯度发育。

Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products.

作者信息

Holloway David M, Harrison Lionel G, Kosman David, Vanario-Alonso Carlos E, Spirov Alexander V

机构信息

Mathematics Department, British Columbia Institute of Technology, Burnaby, BC, Canada.

出版信息

Dev Dyn. 2006 Nov;235(11):2949-60. doi: 10.1002/dvdy.20940.

Abstract

We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair-rule genes, such as even-skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units.

摘要

我们通过量化蛋白质模式中的空间精度,分析了果蝇母体梯度与体节形成之间的关系。体节形成最初出现在成对规则基因的条纹状表达模式中,比如偶数间隙基因(eve)。我们比较了Eve与母体形态发生素Bicoid(Bcd)和Caudal(Cad)蛋白梯度之间的位置精度,结果表明Eve的位置最初可能由母体蛋白浓度决定,但这些浓度并不具备确定Eve成熟条纹模式的精度。通过使用空间趋势,我们避免了测量单个边界精度(如间隙基因模式)时可能出现的复杂情况,并能够跟踪精度随时间的变化。在核分裂周期13和14期间,我们发现Eve与卵长的相关性越来越高,而Bcd则不然。这一发现表明,精度的变化是体节形成从由母体梯度建立的绝对空间测量,分离为以相对(卵长百分比)单位精确测量的一部分。

相似文献

2
Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms.
Development. 2002 Nov;129(21):4931-40. doi: 10.1242/dev.129.21.4931.
3
Modeling the precision and robustness of Hunchback border during Drosophila embryonic development.
J Theor Biol. 2008 Sep 21;254(2):390-9. doi: 10.1016/j.jtbi.2008.05.021. Epub 2008 May 24.
4
Natural variation of the expression pattern of the segmentation gene even-skipped in melanogaster.
Dev Biol. 2015 Sep 1;405(1):173-81. doi: 10.1016/j.ydbio.2015.06.019. Epub 2015 Jun 27.
6
A precise Bicoid gradient is nonessential during cycles 11-13 for precise patterning in the Drosophila blastoderm.
PLoS One. 2008;3(11):e3651. doi: 10.1371/journal.pone.0003651. Epub 2008 Nov 7.
8
Temporal dynamics of pair-rule stripes in living embryos.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8376-8381. doi: 10.1073/pnas.1810430115. Epub 2018 Jul 30.
9
Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression.
PLoS One. 2017 Apr 24;12(4):e0176228. doi: 10.1371/journal.pone.0176228. eCollection 2017.
10
Shaping a morphogen gradient for positional precision.
Biophys J. 2010 Aug 4;99(3):697-707. doi: 10.1016/j.bpj.2010.04.073.

引用本文的文献

1
Quantifying the genetic origins of body plan scaling.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2422340121. doi: 10.1073/pnas.2422340121. Epub 2024 Dec 31.
2
Scale invariance in early embryonic development.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2403265121. doi: 10.1073/pnas.2403265121. Epub 2024 Nov 8.
3
A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems.
PLoS Comput Biol. 2024 Jun 5;20(6):e1011882. doi: 10.1371/journal.pcbi.1011882. eCollection 2024 Jun.
4
Rapid response of fly populations to gene dosage across development and generations.
Nat Commun. 2024 May 29;15(1):4551. doi: 10.1038/s41467-024-48960-4.
5
Scale invariance in early embryonic development.
ArXiv. 2023 Dec 29:arXiv:2312.17684v1.
6
The many bits of positional information.
Development. 2021 Feb 1;148(2):dev176065. doi: 10.1242/dev.176065.
7
Two-Exponential Models of Gene Expression Patterns for Noisy Experimental Data.
J Comput Biol. 2018 Nov;25(11):1220-1230. doi: 10.1089/cmb.2017.0063. Epub 2018 Aug 17.
8
Two-stage patterning dynamics in conifer cotyledon whorl morphogenesis.
Ann Bot. 2018 Mar 5;121(3):525-534. doi: 10.1093/aob/mcx185.
9
Causality analysis detects the regulatory role of maternal effect genes in the early embryo.
Genom Data. 2016 Nov 22;11:20-38. doi: 10.1016/j.gdata.2016.11.013. eCollection 2017 Mar.
10
Beyond the French Flag Model: Exploiting Spatial and Gene Regulatory Interactions for Positional Information.
PLoS One. 2016 Sep 27;11(9):e0163628. doi: 10.1371/journal.pone.0163628. eCollection 2016.

本文引用的文献

1
Of gradients and genes: Developmental concepts of Theodor Boveri and his students.
Rouxs Arch Dev Biol. 1994 May;203(6):295-297. doi: 10.1007/BF00457799.
2
Precise domain specification in the developing Drosophila embryo.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061920. doi: 10.1103/PhysRevE.72.061920. Epub 2005 Dec 30.
3
Morphogens: precise outputs from a variable gradient.
Curr Biol. 2006 Jan 10;16(1):R29-31. doi: 10.1016/j.cub.2005.12.005.
4
Finding the center reliably: robust patterns of developmental gene expression.
Phys Rev Lett. 2005 Nov 11;95(20):208103. doi: 10.1103/PhysRevLett.95.208103. Epub 2005 Nov 9.
5
Diffusion and scaling during early embryonic pattern formation.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18403-7. doi: 10.1073/pnas.0509483102. Epub 2005 Dec 13.
6
Bicoid determines sharp and precise target gene expression in the Drosophila embryo.
Curr Biol. 2005 Nov 8;15(21):1888-98. doi: 10.1016/j.cub.2005.09.046.
7
Interlinked fast and slow positive feedback loops drive reliable cell decisions.
Science. 2005 Oct 21;310(5747):496-8. doi: 10.1126/science.1113834.
8
Regulated cell-to-cell variation in a cell-fate decision system.
Nature. 2005 Sep 29;437(7059):699-706. doi: 10.1038/nature03998. Epub 2005 Sep 18.
9
Formation of the BMP activity gradient in the Drosophila embryo.
Dev Cell. 2005 Jun;8(6):915-24. doi: 10.1016/j.devcel.2005.04.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验