Suppr超能文献

蜡样芽孢杆菌双核β-内酰胺酶催化β-内酰胺水解的活性。

The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams.

作者信息

Badarau Adriana, Damblon Christian, Page Michael I

机构信息

Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

出版信息

Biochem J. 2007 Jan 1;401(1):197-203. doi: 10.1042/BJ20061002.

Abstract

Metallo-beta-lactamases are native zinc enzymes that catalyse the hydrolysis of beta-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted beta-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pK(a) 6.52+/-0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some beta-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.

摘要

金属β-内酰胺酶是天然的锌酶,可催化β-内酰胺抗生素的水解,但也能与钴(II)起作用,且催化活性需要一价或二价金属离子。已在不同pH值和金属离子浓度下研究了由CoBcII(来自蜡状芽孢杆菌的钴取代β-内酰胺酶)催化的头孢西丁、头孢菌素和苄青霉素的水解。发现需要一个pK(a)为6.52±0.1的酶基团以去质子化形式进行金属离子结合和催化。酶失去一个钴离子后产生的物种没有明显的催化活性,被认为是单核CoBcII。似乎双核CoBcII是周转所需的酶的活性形式,而单核CoBcII仅参与底物结合。对于某些β-内酰胺抗生素的水解,钴取代酶比天然酶是更有效的催化剂,这表明金属离子的作用主要是提供亲核氢氧根,而不是作为路易斯酸使羰基极化并稳定氧阴离子四面体中间体。

相似文献

5
Metal content and localization during turnover in B. cereus metallo-beta-lactamase.
J Am Chem Soc. 2008 Nov 26;130(47):15842-51. doi: 10.1021/ja801168r.
9
Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake.
J Biol Chem. 2007 Oct 19;282(42):30586-95. doi: 10.1074/jbc.M704613200. Epub 2007 Aug 22.
10
Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
Proteins. 2004 Feb 15;54(3):412-23. doi: 10.1002/prot.10554.

引用本文的文献

1
Navigating the Current Treatment Landscape of Metallo-β-Lactamase-Producing Gram-Negative Infections: What are the Limitations?
Infect Dis Ther. 2024 Nov;13(11):2423-2447. doi: 10.1007/s40121-024-01044-8. Epub 2024 Oct 1.
2
Epidemiology of Resistance Determinants Identified in Meropenem-Nonsusceptible Collected as Part of a Global Surveillance Study, 2018 to 2019.
Antimicrob Agents Chemother. 2023 May 17;67(5):e0140622. doi: 10.1128/aac.01406-22. Epub 2023 Apr 19.
3
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
4
Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.
Biomolecules. 2020 Jun 3;10(6):854. doi: 10.3390/biom10060854.
5
Emergence of metal selectivity and promiscuity in metalloenzymes.
J Biol Inorg Chem. 2019 Jun;24(4):517-531. doi: 10.1007/s00775-019-01667-0. Epub 2019 May 21.
7
Use of ferrous iron by metallo-β-lactamases.
J Inorg Biochem. 2016 Oct;163:185-193. doi: 10.1016/j.jinorgbio.2016.07.013. Epub 2016 Jul 26.
8
Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1.
J Am Chem Soc. 2014 May 21;136(20):7273-85. doi: 10.1021/ja410376s. Epub 2014 May 12.
9
Metallo-β-lactamase structure and function.
Ann N Y Acad Sci. 2013 Jan;1277:91-104. doi: 10.1111/j.1749-6632.2012.06796.x. Epub 2012 Nov 16.
10
X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.
J Inorg Biochem. 2012 Jun;111:182-6. doi: 10.1016/j.jinorgbio.2011.12.013. Epub 2012 Jan 31.

本文引用的文献

2
Direct evidence that the reaction intermediate of metallo-beta-lactamase L1 is metal bound.
Biochemistry. 2005 Jan 25;44(3):1078-87. doi: 10.1021/bi048385b.
4
Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase.
J Biol Chem. 2004 Jun 18;279(25):26046-51. doi: 10.1074/jbc.M311373200. Epub 2004 Mar 31.
6
The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril.
J Biol Chem. 2003 Jun 27;278(26):23868-73. doi: 10.1074/jbc.M301062200. Epub 2003 Apr 8.
7
Substrate-activated zinc binding of metallo-beta -lactamases: physiological importance of mononuclear enzymes.
J Biol Chem. 2002 Jul 5;277(27):24142-7. doi: 10.1074/jbc.M202467200. Epub 2002 Apr 19.
10
Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli.
Antimicrob Agents Chemother. 2001 Apr;45(4):1254-62. doi: 10.1128/AAC.45.4.1254-1262.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验