Webb Sarah E, Miller Andrew L
Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
Biochim Biophys Acta. 2006 Nov;1763(11):1192-208. doi: 10.1016/j.bbamcr.2006.08.004. Epub 2006 Aug 5.
It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming pathways known to modulate early developmental events (such as the Wnt/Ca(2+)pathway; [T.A. Westfall, B. Hjertos, D.C. Slusarski, Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning, Dev. Biol. 259 (2003) 380-391]).
有人提出,以脉冲、波和稳定梯度形式存在的钙离子信号,可能在脊椎动物早期发育过程中的关键模式形成事件中发挥关键作用[L.F.贾菲,《钙模式对早期发育的组织作用》,《生物论文》21 (1999) 657 - 667;M.J.贝里奇、P.利普、M.D.布特曼,《钙信号的多功能性和普遍性》,《自然综述:分子细胞生物学》1 (2000) 11 - 21;S.E.韦伯、A.L.米勒,《胚胎发育过程中的钙信号》,《自然综述:分子细胞生物学》4 (2003) 539 - 551]。参照斑马鱼(Danio rerio)和非洲爪蟾(Xenopus laevis)的胚胎,我们回顾了囊胚期和原肠胚期报道的钙离子信号。这个发育窗口涵盖了外包、内卷和汇聚延伸等主要模式形成事件,这些事件导致了基本胚层和体轴的建立[C.B.金梅尔、W.W.巴拉德、S.R.金梅尔、B.厄尔曼、T.F.席林,《斑马鱼胚胎发育阶段》,《发育动力学》203 (1995) 253 - 310]。将展示数据以支持以下观点:钙离子释放后接着被螯合的传播波(包括长程和短程)可能在以下方面发挥关键作用:(1) 在这些模式形成事件中协调细胞运动;(2) 有助于基本胚胎轴的建立;以及(3) 帮助界定特定组织区域和胚胎结构的形态边界,包括未来的器官原基[E.吉兰德、A.L.米勒、E.卡尔普斯、R.贝克、S.E.韦伯,《斑马鱼原肠胚形成过程中多细胞大规模节律性钙波的成像》,《美国国家科学院院刊》96 (1999) 157 - 161;J.B.沃林福德、A.J.埃瓦尔德、R.M.哈兰德、S.E.弗雷泽,《非洲爪蟾汇聚延伸过程中的钙信号》,《当代生物学》11 (2001) 652 - 661]。还将讨论这些钙离子瞬变的各种潜在靶点,以及它们如何与其他已知的调节早期发育事件的模式形成途径(如Wnt/钙离子途径;[T.A.韦斯特福尔、B.赫杰托斯、D.C.斯卢萨尔基,《斑马鱼背腹模式形成中细胞内钙调节的需求》,《发育生物学》259 (2003) 380 - 391])整合。